• Title/Summary/Keyword: frequency-to-voltage converter

Search Result 920, Processing Time 0.029 seconds

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

Reduction of Conducted Emission in Interleaved RPWM Buck Converter (인터리브드 RPWM Buck 컨버터의 전도성 노이즈 감소에 대한 연구)

  • Lee, Seunghyun;Lee, Keunbong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.298-308
    • /
    • 2017
  • This paper presents a Interleaved Buck Converter(IBC) system with Random PWM to reduce electromagnetic noise by harmonics. Swithced mode power supply generally controlled by high switching frequency have a electromagnetic interference(EMI) issue due to the high-voltage/high-current switching to regulate the voltage in buck converter. To solve the problem. we present a novel IBC system with PRBS. IBC system has two active switches with 180 phase difference that controll the cicuit with two PWM signal. IBC system may be disadventageous for the cost due to the addtion of one set of switch, but it has adventages of power distribution, current ripple cancellation, fast transient response, and passive component size reduction. To verify the validity of study, simulation program has been bulit using PSIM and the experimental results of IBC system using RPWM was compared with the conventinal PWM and randomized PWM.

A New Gate Pulse Generating Method of 12-Pulse Phase Controlled Rectifier for HVDC (HVDC용 12-펄스 위상제어정류기의 새로운 게이트 펄스 발생 기법)

  • Ahn, Jong-Bo;Kim, Kook-Hun;Lee, Jong-Moo;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.139-141
    • /
    • 2000
  • High voltage direct current(HVDC) transmission system uses the phase controlled rectifier triggered by means of IPC(individual phase control) or EPC(equidistant pulse control). Most HVDC system has adopted EPC method that can solve the harmonic instability problem of IPC method in weak power system. But EPC has inherent indirect synchronizing problem requiring the closed loop control. This paper presents the new gate pulse generating method for 12-pulse HVDC converter, which combines IPC with EPC. Simulation and test results are presented. The basic concept is that it generates the gating pulse for 12-pulse converter by synthesizing the internal phase reference using the frequency and phase information of a sin91e phase voltage. To ensure the reliability of the external phase input, Potential transformer that detects the phase voltage has redundancy. Using fault detecting algorithm the healthy input is always guaranteed. And the frequency compensation function was reinforced.

  • PDF

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

CMOS Interface Circuit for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS 인터페이스 회로)

  • Jeong, Jae-hwan;Kim, Ji-yong;Jang, Jeong-eun;Shin, Hee-chan;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents a CMOS interface circuit for MEMS acceleration sensor. It consists of a capacitance to voltage converter(CVC), a second-order switched-capacitor (SC) integrator and comparator. A bandgap reference(BGR) has been designed to supply a stable bias to the circuit and a ${\Sigma}{\Delta}$ Modulator with chopper - stabilization(CHS) has also been designed for more suppression of the low frequency noise and offset. As a result, the output of this ${\Sigma}{\Delta}$ Modulator increases about 10% duty cycle when the input voltage amplitude increases 100mV and the sensitivity is x, y-axis 0.45v/g, z-axis 0.28V/g. This work is designed and implemented in a 0.35um CMOS technology with a supply voltage of 3.3V and a sampling frequency of 3MHz sampling frequency. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

  • PDF

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.

Dual Mode Buck Converter Capable of Changing Modes (모드 전환 제어 가능한 듀얼 모드 벅 변환기)

  • Jo, Yong-min;Lee, Tae-Heon;Kim, Jong-Goo;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.40-47
    • /
    • 2016
  • In this paper, a dual mode buck converter with an ability to change mode is proposed, which is suitable particularly for portable device. The problem of conventional mode control circuit is affected by load variation condition such as suddenly or slowly. To resolve this problem, the mode control was designed with slow clock method. Also, when change from the PFM(Pulse Frequency Modulation) mode to the PWM(Pulse Width Modulation) mode, to use the counter to detect a high load. And the user can select mode transition point in load range from 20mA to 90mA by 3 bit digital signal. The circuits are implemented by using BCDMOS 0.18um 2-polt 3-metal process. Measurement environment are input voltage 3.7V, output voltage 1.2V and load current range from 10uA to 500mA. And measurement result show that the peak efficiency is 86% and ripple voltage is less 32mV.

Design of LLC Resonant Converter having Enhanced Load Range for Communication Power (넓은 부하 범위를 갖는 통신 전원용 LLC 공진 컨버터의 설계)

  • So, Byong-Chul;Seo, Ki-Bong;Lee, Dong-Hoo;Jung, Ho-Chul;Hwang, Soon-Sang;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.461-469
    • /
    • 2012
  • This paper deals with LLC resonant converter for communication power supply. Generally, the load range of communication power is very wide. However, voltage conversion ratio of LLC converter is highly dependent of load condition. So, it is not easy to design of robust power supply along with the wide load condition. Especially, it is not possible to meet the required low voltage conversion ratio for low output voltage with high input voltage under the light load condition. To solve this problem, in this paper, a new duty control interlinked with operational frequency has been proposed. To prove the usefulness of the proposed control method, the simulation and experiments were carried out. The simulation and experimental results show the usefulness of the proposed control method.

Current Sensorless Three Phase PWM AC/DC Boost Converter with Unity Power Factor (전류센서리스 단위역률 3상 PWM AC/DC Boost 컨버터)

  • 천창근;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • Diode rectifier which can't be controlled output voltage and phase control converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, three phase PWM(Pulse Width Modulation) AC/DC boost converter is studied to solve these problems. The characteristics of a proposed converter are to control the phase of current without current sensor as a very simple control algorithm using circuit parameters only and to apply sinusoidal PWM method with fixed switching frequency due to a difficult design of input filter and switching device. We simulate for the proposed algorithm that high power factor is achieved and DC link voltage has fast dynamic response without ripple in rectifying and regenerating operation. As a result of experiment with circuit parameter(inductor, capacitor) decided in simulation, the proposed converter had high power factor and reduction of low order harmonics as against diode rectifier.