• Title/Summary/Keyword: frequency-to-time transformation

Search Result 199, Processing Time 0.024 seconds

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

Alternating Sunspot Area and Hilbert Transform Analysis

  • Kim, Bang-Yeop;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.261-265
    • /
    • 2011
  • We investigate the sunspot area data spanning from solar cycles 1 (March 1755) to 23 (December 2010) in time domain. For this purpose, we employ the Hilbert transform analysis method, which is used in the field of information theory. One of the most important advantages of this method is that it enables the simultaneous study of associations between the amplitude and the phase in various timescales. In this pilot study, we adopt the alternating sunspot area as a function of time, known as Bracewell transformation. We first calculate the instantaneous amplitude and the instantaneous phase. As a result, we confirm a ~22-year periodic behavior in the instantaneous amplitude. We also find that a behavior of the instantaneous amplitude with longer periodicities than the ~22-year periodicity can also be seen, though it is not as straightforward as the obvious ~22-year periodic behavior revealed by the method currently proposed. In addition to these, we note that the phase difference apparently correlates with the instantaneous amplitude. On the other hand, however, we cannot see any obvious association of the instantaneous frequency and the instantaneous amplitude. We conclude by briefly discussing the current status of development of an algorithm for the solar activity forecast based on the method presented, as this work is a part of that larger project.

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

ON THE COARSE-GRAINNING OF HYDROLOGIC PROCESSES WITH INCREASING SCALES

  • M. Levent Kavvas
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05b
    • /
    • pp.3-3
    • /
    • 1998
  • In this pressentation it is argued that the heterogeneity of a hydrologic attribute which may seem to be nonstationary at one scale, may become stationary at a larger scale. The fundamental reason for transformation from nonstationarity to stationarity whith the increase in scale is the phenomenon of coarse-graining of the hydrologic processes with increasing scale. Due to the phenomenon of aliasing, a particular scale hydrologic process heterogeneity which is observed as a nonstationary process at that scale, may be observed as a stationary process at a higher(larger) scale whose size is bigger than the stationary extent of the lower scale heterogeneity. As one goes through a hierarchical sequence of larger and larger scales for observations, one would eliminate nonstationarities which emerge at some lower scales at the expense of losing information on the high frequency fluctuations of the lower scale heterogeneities which will no longer be observed at the larger sampling scales. We call this phenimenon as the "coarse-graining in hydrologic observations". In this presentation, it is also argued that by the coarse-graining of hydrologic processes due to the averaging and aliasing operations at increasing scales, the conservation laws corresponging to these scales may still be quite parsimonious, and need not be more complicated as the scales get larger. It is shown that shen a higher(larger) scale process is formed by averaging a lower(smaller) scale process in time or space, the high frequency components of the lower scale process will be eliminated by the averaging operation. Thereby, the resuliiting average hydrologic dynamics, free from the effects of the high frequency components of the lower scale process, can still be quite simple in form. This is demonstrated by means of some recent upscaling work on the solute teansport conservation equation for hetergeneous aquifers. By means of this solute transport example, it is also shown that for the ensemble average form of a hydrologic conservation equation to be equivalent to its volume-average form at any scale, the parameter functions of that conservation equation at the immediately lower scale must be ergodic.

  • PDF

A Study on the Ray Based Broad Band Modeling for Shallow Water Acoustic Wave Propagations (천해 음파전달 모의에 적합한 음선기반 광대역 신호 모델링 기법에 관한 연구)

  • Park Cheol-Soo;Cho Yong-Jin;Ahn Jong-Woo;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.298-304
    • /
    • 2006
  • This paper proposes a ray-based forward modeling scheme which is suitable for the shallow water acoustic wave propagation simulations. The proposed model comprises of ray tracings for the layered media of which sound speed profiles are interpolated linearly. considerations of plane and spherical wave reflection coefficients. and calculations of the phases and the amplitudes of eigen rays. The main characteristic of the scheme is fast simulation time due to direct calculation of the broad-band time signals in the time-domain, i.e. without transformation of the frequency-domain solutions to the time si 밍 131s. Finally, we applied the model to 4-types of test environments and compared the resulting signals with those of ORCA and Ram in order to validate the proposed model.

Impact shock and kinematic characteristics of the lower extremity's joint during downhill running (내리막 달리기의 충격 쇼크와 신체 관절의 운동학적 특징)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.117-129
    • /
    • 2005
  • The purpose of this study was to characterize the impact shock wave and its attenuation, and the kinematic response of the lower extremity's joints to the impact shock during downhill running in which the lower extremity's extensor acts dominantly. For this study, fifteen subjects(mean age:$27.08{\pm}4.39$; mass:$76.30{\pm}6.60$; height:$177.25{\pm}4.11$) were required to run on the 0% grade treadmill and downhill grades of 7%, and 15% in random at speed of their preference. When the participant run, acceleration at the tibia and the sacrum and kinematic data of the lower extremity were collected for 20s so as to provide at least 5 strides for analysis at each grade. Peak impact accelerations were used to calculate shock attenuation between the tibia and sacrum in time domain at each grade. Fast Fourier transformation(FFT) and power spectral density(PSD) techniques were used to analyze impact shock factors and its attenuation in the frequency domain. Joint coordinate system technique was used to compute angular displacement of the ankle and knee joint in three dimension. The conclusions were drawn as fellows: 1. Peak impact accelerations of the tibia and sacrum in downhill run were greater than that of 0% grade run, but no significant between conditions. Peak shock of PSD resembled also in pattern of peak impact acceleration. The wave of impact shock attenuation between the tibia and sacrum decreased with increasing grade, but didn't find a significant difference between grade conditions. 2. Adduction/abduction, flexion/extention, and internal/external rotation of the ankle and knee joints at support phase between grade conditions didn't make much difference. 3. At grade of 7% and 15%, there were relationship between the knee of the flexion/extension movement and peak impact acceleration during heel strike and found also it in the ankle of plantar/dorsiflexion at grade of 15%.

Improvement of condition assessment criteria and embankment transformation of agricultural reservoirs after raising embankments

  • Lee, Dal-Won;Lee, Young-Hak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.258-274
    • /
    • 2016
  • Recently, as fluctuations in annual precipitations continue to grow, the frequency of floods and droughts is rapidly increasing. Especially, since many reservoirs are reported as having less capacity and aging faster than large dams, the damages due to floods and droughts are estimated to become more severe. With this background for the present study, field investigation of reservoirs in Chungnam, Chungbuk, and Chonbuk regions was carried out for disaster prevention and the safety management of agricultural reservoirs. Furthermore, embankment transformations were compared and analyzed after the raising of embankments. Based on design methods for remodeling agricultural reservoirs and the results of embankment raising and the problems which occurred on crest, supplementation to the upstream and downstream slopes, control sector, and spillway should be implemented in the existing reservoir. In regard to this, the condition assessment score of compound member of reservoirs was performed, the Chungnam region score was in the 3.11-4.73 range. In addition, reservoirs in Chungbuk scored in the 4.00-4.49 range, and reservoirs in Chonbuk scored in the 3.90-4.60 range. Applying current precision safety inspection practices to small reservoirs requires economic expenses and time, for which assessment items are too varied and complex. Therefore, subdivided condition assessment items and criteria should be improved and streamlined by deleting, reducing, combining, and selecting only the riskiest factors. In the future, reservoirs should be periodically monitored and systemically managed and rational plans for maintenance and repairs should be used as reinforcement methods.

Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer (자주포 로드암 동하중의 상당 정하중으로의 변환 및 형상최적설계)

  • Choe, U-Seok;Gang, Sin-Cheon;Sin, Min-Jae;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3767-3781
    • /
    • 1996
  • Generally, dynamic loads are applied to real structures. Since the analysis with the dynamic load is extremely difficult, static loads are utilized by proper conversions of the dynamic loads. The dynamic loads are usually converted ot static loads by safety foactors of experiences. However, it may increase weight and decrease reliability. In this study, a method is proposed for the conversion process. An equivalent static load is calculated ot generate a same maximum displacement. The method is verified through numerical tests on a spring-mass systems of one and multi degrees-of freedom. It has been found that the duration time of the loads and the natural frequencies of the structures are critical in the conversion process. A road arem is a self-propelled howizer is selected for the application of the proposed method. The shape of the road arm is optimized under the converted static loads.

Development of 3-State Blind Digital Watermark based on the Correlation Function (신호상관함수를 이용한 3 상태 능동적 디지털 워터마크의 개발)

  • Choi, YongSoo
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.143-151
    • /
    • 2020
  • The digital content's security and authentication are important in the field of digital content application. There are some methods to perform the authentication. The digital watermarking is one of authentication methods. Paper presents a digital watermark authentication method that works in the application of digital image. The proposed watermark has the triple status information and performs the embedding and the detection without original Content. When authenticating the owner information of digital content, an autocorrelation function is used. In addition, a spread spectrum method is used to be adaptive to the signal of the original content in the frequency domain(DWT Domain). Therefore, the possibility of errors occurring in the detection of hidden information was reduced. it also has a advantage what Watermarking in DWT has faster embedding and detection time than other transformation domains(DFT, DCT, etc.). if it has a an image of size N=mXm, the computational amount can be reduced from O(N·logN) to O(N). The particular advantage is that it can hide more information(bits) per bit.