• Title/Summary/Keyword: frequency response functions

Search Result 399, Processing Time 0.029 seconds

Territory Defense Strategy of the Wrinkled Frog, Rana rugosa

  • Park, Shi-Ryong;Cheong, Seokwan
    • The Korean Journal of Ecology
    • /
    • v.25 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • The advertisement call of anurans functions to attract potential mates. The dominant frequency of an advertisement call is generally getting lower with increased snout-vent length (SVL) of the caller Rana rugosa has an advertisement call tilth a particularly high frequency modulation. We conducted a playback experiment to verify the function of frequency modulation, and investigated the territorial behavior of the frog. The frog has five types of territory defense strategy. Strategy choice depended on the caller's SVL. Small males became satellites or lowered the dominant frequency of their advertisement call, whereas large males actively defended their territory with encounter calls. In response to high frequency (1107 Hz) playback, the frogs lowered their advertisement call frequency, and towered them further in response to the low frequency (1028 Hz) playback. In addition, the number of pulses in a call was increased in response to the playback. These results indicate that the frog avoids physical conflict with competitors by selecting a territory defense strategy suitable for the caller's size, and by lowering its call frequency to disguise its SVL.

Frequency Response Characteristics of Automotive Hydraulic Pipelines (자동차용 유압관로의 주파수 응답 특성)

  • Kim, Do-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.177-182
    • /
    • 2007
  • In this paper, automotive hydraulic pipeline systems are modeled in which a straight blocked pipe, two pipes with sudden expansion or contraction are connected in series and terminated with a chamber. The frequency response characteristics of these composite pipeline systems are investigated experimentally. The theoretical analysis for various pipe configurations is base on transfer matrix method with frequency dependent viscous friction distributed parameter pipeline model. The gain and phase of transfer functions are included for comparison with experimental results. There is close agreement between the results of experimental and theoretical determination of pressure response in automotive hydraulic pipeline systems.

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

Transient Response of Magnetic Field Integral Equation Using Laguerre Polynomials as Temporal Expansion Functions (라겐르 함수를 시간영역 전개함수로 이용한 자장 적분방정식의 과도 응답)

  • 정백호;정용식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • In this Paper, we propose an accurate and stable solution of the transient electromagnetic response from three-dimensional arbitrarily shaped conducting objects by using a time domain magnetic field integral equation. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of temporal expansion functions with decaying exponential functions and Laguerre·polynomials. Since these temporal expansion functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation and converges to zero unconditionally. To show the validity of the proposed method, we solve a time domain magnetic field integral equation for three closed conducting objects and compare the results of Mie solution and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

On Choice of Kautz functions Pole and its Relation with Accuracy in System Identification

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.125-128
    • /
    • 1999
  • A linear time-invariant model can be described either by a parametric model or by a nonparametric model. Nonparametric models, for which a priori information is not necessary, are basically the response of the dynamic system such as impulse response model and frequency models. Parametric models, such as transfer function models, can be easily described by a small number of parameters. In this paper aiming to take benefit from both types of models, we will use linear-combination of basis fuctions in an impulse response using a few parameters. We will expand and generalize the Kautz functions as basis functions for dynamical system representations and we will consider estimation problem of transfer functions using Kautz function. And so we will present the influences of poles settings of Kautz function on the identification accuracy.

  • PDF

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Numerical and experimental studies of a building with roller seismic isolation bearings

  • Ortiz, Nelson A.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.475-489
    • /
    • 2015
  • This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. The results are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model. Finally, the performance of the constructed seismic protection system is assessed through a parametric study.

Experimental Verifications of Fatigue Crack Identification Method Using Excitation Force Level Control for a Cantilever Beam (외팔보에 대한 가진력수준제어를 통한 피로균열규명기법의 실험적 검증)

  • Kim Do-Gyoon;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1467-1474
    • /
    • 2004
  • In this study, a new damage identification method for beam-like structures with a fatigue crack is proposed. which does not require comparative measurement on an intact structure but require several measurements at different level of excitation forces on the cracked structure. The idea comes from the fact that dynamic behavior of a structure with a fatigue crack changes with the level of the excitation force. The 2$^{nd}$ spatial derivatives of frequency response functions along the longitudinal direction of a beam are used as the sensitive indicator of crack existence. Then, weighting function is employed in the averaging process in frequency domain to account for the modal participation of the differences between the dynamic behavior of a beam with a fatigue crack at the low excitation and one at the high excitation. Subsequently, a damage index is defined such that the location and level of the crack may be identified. It is shown from the analysis of vibration measurements in this study that comparison of frequency response characteristics of a beam with a single fatigue crack at different level of excitation forces enables an effective detection of the crack.

Damping Measurements of Structural Rectangular Beam (구조용 사각 보의 감쇠측정)

  • Ryu, Bong-Jo;Song, Seon-Ho;Yoon, Choong-Sup;Ahn, Byung-Wook;Lee, Young-Yeob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1071-1074
    • /
    • 2006
  • The frequency response functions and loss factors, $\eta$, of structurally hollowed, rectangular, metal cantilever beams have been measured in bending vibrations within low strain amplitudes. The beams were heat treated or fined with aluminum to vary the material conditions. The measured frequency response functions at the end of the cantilevered beam were processed to calculate the structural damping ratios. The results showed that the modal frequencies and damping ratios of heat treated beam are increased due to the increase of beam rigidity with the predictions of the classical beam theory. When the beams are fined with aluminum, however, the frequencies are decreased due to the increase of mass, while the damping ratios are increased. As the agreement between measurement and classical theory is good, the performance of a beam with heat treated or fined with dissimilar material can be duplicated, for industrial and most practical purposes, by the theory developed for an internally damped homogeneous beam.

  • PDF

Study on improvement of frequency response characteristics of accelerometer (진동가속도계의 주파수응답특성 개선에 관한 연구)

  • 한응교;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1981
  • There are three types in frequency response accelerometer; one is lightly damped piezp type, another is oil damping stainguage type and the third is electro induction type accelerometer within electromagnetic damping. The usable frequency range of lightly damped accelerometers is limited to 0.2 of their mounted natural frequency for amplitude distortion of less than 5 percents. There have been situation where the measured motion contains unforeseen high - frequency components, which are regarded as such due to the accelerometer transfer function. There are several way to overcome amplitude distortion of the higher than anticipated frequency components; (I) to make use of the accelerometer with natural frequency three times and more as high as the measured frequency, (II) to establish data-analysis techniques which will account for the amplitude distortion, (III) to set up a notch filter circuit which has a transfer function that is the reciprocal of the accelerometer transfer function, and so on. This paper makes a report of the method as to(III), i. e., set up a few notch filter circuits, it is discussed what happens when the transfer functions, are in discord as to natural frequency of the filter and accelerometer damping vs. filter damping. And especially as for the cantilever strain gauge type accelerometer made by oneself with ease, it was compared and discussed between the ideological value and the experimental value of actual designed circuit in case of the mismatching of the transfer functions, and it was considered whether to be practicable or not, the result of which was as following; the useful frequency range of the accelerometer can be extended to near resonance if (a) the accelerometer mounted natural frequency and the filter center frequency are matched within .+-. 2 percent and (b) the damping ratios are matched within two factors. Therefore, we obtained the good result in improvement for extending frequency response characteristics of accelerometer.

  • PDF