• Title/Summary/Keyword: frequency response function

Search Result 1,051, Processing Time 0.023 seconds

Onset condition of the combustion-driven sound in a surface burner (표면 연소기의 연소진동음의 발생조건)

  • Kwon, Y.P.;Lee, J.W.;Lee, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF

Nonlinear Frequency Response Analysis of Circumferentially Grooved Journal Bearing Considering Cavitation (공동을 고려한 원주방향 급유홈 저널 베어링의 비선형 진동 해석)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.160-166
    • /
    • 1999
  • Nonlinear characteristics of the hydrodynamic journal bearing with circumferentially groove are analyzed numerically considering cavitation region, when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width universal Reynolds equation at each time step. Frequency response function and journal orbit obtained from both linear and nonlinear bearing simulations are compared with each other. The vibration response of the journal is different from the expectation obtained from the linear analysis as increase the vibration amplitude of external disturbance. Therefore, the linear theory is not adequate, and the nonlinear calculation such as used in this research is needed to design safety rotor systems.

  • PDF

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension (자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정)

  • Park, Ho;Hahn, Chang-Su;Kim, Byeong-Woo;Kim, Dong-Gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

A Experimental study on natural frequency measurement of passenger car tire under the load and rotation (하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구)

  • 김병삼;홍동표;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

An Experimental Study on the Measurement of Radial Directional Natural Frequency in a Passenger Car Tire Roboting under the Load (하중을 받고 회전하는 승용차 타이어의 반경방향 고규진동수 측정에 관한 실험적 연구)

  • Kim, Byoung-Sam;Hong, Dong-Pyo;Chi, Chang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The measurement of radial directional natural frequency ina passenger car tire rotating under the load is studied. In order to obtain theoretical matural frequency and mode shape, the ploane vibration of a tire is modeled to that of circular beam. By esing the Tieking method based on Hamiltons's principle, theoretical results are determined by considering tension horce due to tire inflation pressure, retational velocity and tangential, radial stiffness. Radial directional modal parameters varying with the inflation pressure, load, rotational velocity are experimentally determined by using frequency response function method. The results show that experimental conditions canbe considered as the parameters which shift the natural frequency.

Study on improvement of frequency response characteristics of accelerometer (진동가속도계의 주파수응답특성 개선에 관한 연구)

  • 한응교;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1981
  • There are three types in frequency response accelerometer; one is lightly damped piezp type, another is oil damping stainguage type and the third is electro induction type accelerometer within electromagnetic damping. The usable frequency range of lightly damped accelerometers is limited to 0.2 of their mounted natural frequency for amplitude distortion of less than 5 percents. There have been situation where the measured motion contains unforeseen high - frequency components, which are regarded as such due to the accelerometer transfer function. There are several way to overcome amplitude distortion of the higher than anticipated frequency components; (I) to make use of the accelerometer with natural frequency three times and more as high as the measured frequency, (II) to establish data-analysis techniques which will account for the amplitude distortion, (III) to set up a notch filter circuit which has a transfer function that is the reciprocal of the accelerometer transfer function, and so on. This paper makes a report of the method as to(III), i. e., set up a few notch filter circuits, it is discussed what happens when the transfer functions, are in discord as to natural frequency of the filter and accelerometer damping vs. filter damping. And especially as for the cantilever strain gauge type accelerometer made by oneself with ease, it was compared and discussed between the ideological value and the experimental value of actual designed circuit in case of the mismatching of the transfer functions, and it was considered whether to be practicable or not, the result of which was as following; the useful frequency range of the accelerometer can be extended to near resonance if (a) the accelerometer mounted natural frequency and the filter center frequency are matched within .+-. 2 percent and (b) the damping ratios are matched within two factors. Therefore, we obtained the good result in improvement for extending frequency response characteristics of accelerometer.

  • PDF

Nonlinear Frequency Response Analysis of Hydrodynamic Journal Bearing Under External Disturbance (외란을 받는 저널 베어링의 비선형 주파수 응답해석)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.241-245
    • /
    • 1998
  • The traditional approach is to characterize the behavior and performance of fluid film hydrodynamic journal bearings by means of linearized bearing analysis. The objective of this paper is to examine the nonlinear characteristics of the journal bearing when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width Reynolds equation at each time step by the solution of the column method. Frequency response functions obtained from both linear and nonlinear bearing simulations are compared with each other.

  • PDF

A Study on the Compensation of Transducer Effects for the Measurement of Vibration with an Impedance Head (임피턴스헤드로 진동계측시 변환기의 부착영향을 보상하는 방법에 관한 연구)

  • 이현엽;박재영
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.117-122
    • /
    • 1995
  • The transfer matrix method is proposed to compensate the attachment effect of a piezo-electric impedance head. To validate the proposed method, an experiment is carried out for axial vibration of a uniform rod for which an analytical solution is known. The impedance head is attached to the test rod by a stud and is connected to the exciter. The frequency response function is mesured by applying random excitation from the electro-magnetic exciter. The frequency response function compensated by the method proposed in this research shows good agreement with the analytical solution.

  • PDF