• Title/Summary/Keyword: frequency division multiplexing

Search Result 904, Processing Time 0.03 seconds

Improving the PTS Method for the PAPR Reduction in the OFDM System (OFDM 시스템에서 PAPR 감소를 위한 PTS 기법의 성능개선)

  • Kim, Dong-Seek;Kwak, Min-Gil;Cho, Hyung-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1165-1171
    • /
    • 2010
  • The OFDM system has better characteristics in transmission rate, power efficiency, bandwidth efficiency, impulse-noise immunity, and narrow band interference immunity etc. in comparison with other conventional systems. However, high PAPR of an OFDM signals causes some serious non-linear processing of RF amplifier. And performance of the communication system gets worse. Therefore, various methods reducing PAPR of an OFDM skills such as the clipping method, block coding method, and phase rotation method etc. have been researched. In this paper, we propose a high-speed adaptive PTS method which eliminates high PAPR. And we compare the proposed method with other conventional methods. The proposed method has decreased quantity of calculation compare with an adaptive PTS method. Of course, The more its calculation amount is decreased, the more its BER characteristic is not better than an adaptive PTS method. However, keeping up satisfactory BER performance, we highly improved calculation amount of a PTS method.

A Study on the PAPR Reduction and In-Band Distortion Compensation Schemes for Next Generation Mobile Communication Systems (차세대 이동통신 시스템을 위한 PAPR 감소와 대역 내 왜곡보정 기법에 대한 연구)

  • Roh, Jae-Sung;Kim, Wan-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2012
  • Next generation mobile communication systems have been studied and applied to support various services. In next generation mobile communication systems, the most interested research is the integration of various communication systems and the offer of various services by using high-speed data transmission. The integration of communication systems has been researched by using multi standard modem, while the high-speed data transmission for the offer of various services has been applied by using OFDM. This paper has proposed the method to reduce PAPR by using multi standard modem. with EVM, this paper has also suggested the method to compensate in-band distortion while reducing PAPR. By using the proposed methods, this paper has analyzed and simulated the decrease efficiency of PAPR, the performance of CCDF, and the performance of BER in next generation mobile communication systems. The simulation results improved the performance of next generation mobile communication system can be seen that.

Capacity of the Clustered Response Model for Correlated MIMO-OFDM Channel (Correlated MIMO-OFDM 채널을 위한 클러스터 응답 모델의 용량 비교 분석)

  • An, Jin-Young;Baek, Sun-Young;Kim, Sang-Choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.328-331
    • /
    • 2007
  • In this paper, the capacity of the clustered response model for correlated MIMO-OFDM fading channel is investigated. We compare the capacities achieved by correlation at receiver and achieved by correlation at both the transmitter and the receiver for the case where the channel is known and unknown at the transmitter are considered. It is found that the capacity achieved by correlation at receiver is better than the other. It is also shown that the capacity using the water-filling methed is larger than that using the uniform power allocation due to the water-filling gain. But it is negligible when the number of clusters is over the maximum rank of the sum correlation matrix and SNR is high.

  • PDF

Fast Handoff through Minimizing L2 Delay in Next Generation Mobile System (차세대 이동통신 시스템에서 L2 지연 감소를 통한 빠른 핸드오프)

  • Choi Hye-Eun;Kim Namgi;Yoon Hyunsoo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.1023-1032
    • /
    • 2004
  • It is generally known that handoff delay degrades the QoS by packet drop, packet delay and jitter. Moreover. handoff highly effects on QoS in beyond 3G system because not only micro cells for achieving high capacity and fast moving nodes induce the frequent handoff but also hard handoff must be carried out in OFDM system. Therefore, study on a handoff algorithm for guaranteeing QoS is required. Related works on handoff for beyond 3G system mainly focused on reducing the L3 handoff delay or packet loss. That is, these schemes try to compensate L2 delay rather directly eliminate it. However, remained 1.2 delay degrades QoS, especially delay-sensitive realtime traffic. Therefore, we proposed the seamless handoff algorithmwhich can minimize the L2 handoff delay.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.

High Speed 8-Parallel Fft/ifft Processor using Efficient Pipeline Architecture and Scheduling Scheme (효율적인 파이프라인 구조와 스케줄링 기법을 적용한 고속 8-병렬 FFT/IFFT 프로세서)

  • Kim, Eun-Ji;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.175-182
    • /
    • 2011
  • This paper presents a novel eight-parallel 128/256-point mixed-radix multi-path delay commutator (MRMDC) FFT/IFFT processor for orthogonal frequency-division multiplexing (OFDM) systems. The proposed FFT architecture can provide a high throughput rate and low hardware complexity by using an eight-parallel data-path scheme, a modified mixed-radix multi-path delay commutator structure and an efficient scheduling scheme of complex multiplications. The efficient scheduling scheme can reduce the number of complex multipliers at the second stage from 88 to 40. The proposed FFT/IFFT processor has been designed and implemented with the 90nm CMOS technology. The proposed eight-parallel FFT/IFFT processor can provide a throughput rate of up to 27.5Gsample/s at 430MHz.

60GHz band RF transceiver of the broadband point-to-point communication system (광대역 점대점 통신시스템용의 60GHz 대역 무선 송수신기)

  • Choi, Jae-Ha;Yoo, Young-Geun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.39-43
    • /
    • 2012
  • 60GHz band RF transceiver was made with the NRD waveguide structure for the point- to-point communication. A dielectric line that of comprising NRD waveguide was the milling process was not easy because a material gets soft, and also compression and expansion according to a temperature were serious, so this line was not suitable for the device in which the resonance characteristic was important. In addition, the thing for comprising amplification module was difficult in the NRD waveguide structure. In this paper, a way in which to overcome mentioned in upper part, the transceiver was made by below technology. Components in which the resonance characteristic was not important were made with the NRD waveguide hybrid IC, and components in which the resonance characteristic was important were made with waveguide. An amplifier packaged and modularizing the bare chip, it equipped at the NRD waveguide within. Manufactured transceiver communicated with FDD method, and it had 10dBm output power, and -60dBm minimum receive sensitivity.

Phase Noise Self-Cancellation Scheme Based on Orthogonal Polarization for OFDM System

  • Nie, Yao;Feng, Chunyan;Liu, Fangfang;Guo, Caili;Zhao, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4334-4356
    • /
    • 2017
  • In orthogonal frequency-division multiplexing (OFDM) systems, phase noise introduced by the local oscillators can cause bit error rate (BER) performance degradation. To solve the phase noise problem, a novel orthogonal-polarization-based phase noise self-cancellation (OP-PNSC) scheme is proposed. First, the efficiency of canceling the phase noise of the OP-PNSC scheme in the AWGN channel is investigated. Then, the OP-PNSC scheme in the polarization-dependent loss (PDL) channel is investigated due to power imbalance caused by PDL, and a PDL pre-compensated OP-PNSC (PPC -OP-PNSC) scheme is proposed to mitigate the power imbalance caused by PDL. In addition, the performance of the PPC-OP-PNSC scheme is investigated, where the signal-to-interference-plus-noise ratio (SINR) and spectral efficiency (SE) performances are analyzed. Finally, a comparison between the OP-PNSC and polarization diversity scheme is discussed. The numerical results show that the BER and SINR performances of the OP-PNSC scheme outperform the case with the phase noise compensation and phase noise self-cancellation scheme.

From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver across Different OFDM Protocols

  • Li, Rongchun;Dou, Yong;Zhou, Jie;Li, Baofeng;Xu, Jinbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1911-1932
    • /
    • 2013
  • Orthogonal frequency-division multiplexing (OFDM) has become a popular modulation scheme for wireless protocols because of its spectral efficiency and robustness against multipath interference. Although the components of various OFDM protocols are functionally similar, they remain distinct because of the characteristics of the environment. Recently, graphics processing units (GPUs) have been used to accelerate the signal processing of the physical layer (PHY) because of their great computational power, high development efficiency, and flexibility. In this paper, we describe the implementation of parameterized baseband modules using GPUs for two different OFDM protocols, namely, 802.11a and 802.16. First, we introduce various modules in the modulator/demodulator parts of the transmitter and receiver and analyze the computational complexity of each module. We then describe the integration of the GPU-based baseband modules of the two protocols using the parameterized method. GPU-based implementations are addressed to explain how to accelerate the baseband processing to archive real-time throughput. Finally, the performance results of each signal processing module are evaluated and analyzed. The experiments show that the GPU-based 802.11a and 802.16 PHY meet the real-time requirement and demonstrate good bit error ratio (BER) performance. The performance comparison indicates that our GPU-based implemented modules have better flexibility and throughput to the current ones.

XCP-OFDM System using Cross-handed Circular Polarization (역선회 원편파를 이용한 XCP-OFDM 시스템)

  • 김병옥;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.316-322
    • /
    • 2002
  • The Orthogonal Frequency Division Multiplexing(OFDM) is a special case of multicarrier transmission, where a single data stream is divided into many subcarriers and transferred in a parallel way. It reduces the necessary bandwidth using the orthogonality between the subcarriers. Therefore it requires the transmission channel which has stable characteristic. When the delay spread of the channel exceed the guard interval, then the orthogonality of the subcarriers cannot maintain and as a result the system performance degrade. In this paper, the XCP-OFDM(OFDM using cross-handed Circular Polarization) system is newly proposed. This system divides the channel in order to eliminate the overlapping of subcarrier's spectrum by using cross-handed circular polarization. Therefore, the proposed XCP-OFDM system can improve the performance without increasing the guard interval. Both theoretical analysis and simulation results are described.