• Title/Summary/Keyword: frequency dividers, phase noise

Search Result 3, Processing Time 0.018 seconds

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ-Δ Fractional-N Frequency Synthesizers

  • Chen, Zuow-Zun;Lee, Tai-Cheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • A multiphase compensation method with mismatch linearization technique, is presented and demonstrated in a $\Sigma-\Delta$ fractional-N frequency synthesizer. An on-chip delay-locked loop (DLL) and a proposed delay line structure are constructed to provide multiphase compensation on $\Sigma-\Delta$ quantizetion noise. In the delay line structure, dynamic element matching (DEM) techniques are employed for mismatch linearization. The proposed $\Sigma-\Delta$ fractional-N frequency synthesizer is fabricated in a $0.18-{\mu}m$ CMOS technology with 2.14-GHz output frequency and 4-Hz resolution. The die size is 0.92 mm$\times$1.15 mm, and it consumes 27.2 mW. In-band phase noise of -82 dBc/Hz at 10 kHz offset and out-of-band phase noise of -103 dBc/Hz at 1 MHz offset are measured with a loop bandwidth of 200 kHz. The settling time is shorter than $25{\mu}s$.

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology

  • Kim, Namhyung;Yun, Jongwon;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.131-137
    • /
    • 2014
  • A 120 GHz voltage controlled oscillator (VCO) with a divider chain including an injection locked frequency divider (ILFD) and six static frequency dividers is demonstrated using 65-nm CMOS technology. The VCO is designed based on the LC cross-coupled push-push structure and operates around 120 GHz. The 60 GHz ILFD at the first stage of the frequency divider chain is based on a similar topology as the core of the VCO to ensure the frequency alignment between the two circuit blocks. The static divider chain is composed of D-flip flops, providing a 64 division ratio. The entire circuit consumes a DC power of 68.5 mW with the chip size of $1385{\times}835{\mu}m^2$.

Design and Implementation of Wideband Ultra-Fast High Precision Frequency Synthesizer for ELINT Equipment (ELINT 장비용 광대역 초고속 고정밀 주파수 합성기 설계 및 구현)

  • Lee, Kyu-Song;Jeon, Kye-Ik;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1178-1185
    • /
    • 2009
  • In this paper, a wideband ultra-high speed & high purity discrete frequency synthesizer having minimum 2.5 MHz step size was proposed. To achieve fast and wideband operation, discrete frequencies were synthesized by mixing of 3 different pre-synthesized 16 frequencies made from fixed PLL and frequency dividers. Frequencies with discrete 2.5 MHz step were produced in 710~1,610 MHz. The measured hopping response time was 350 nsec average, output level was 21.5 dBm average with 2.65 dB flatness, spurious and harmonics level were suppressed below -60 dBc, and phase noise was -94 dBc/Hz@100 Hz. Also, a new measurement method for synthesizer response time was described.