• 제목/요약/키워드: frequency allocation

검색결과 552건 처리시간 0.021초

Robust Energy Efficiency Power Allocation for Uplink OFDM-Based Cognitive Radio Networks

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.506-509
    • /
    • 2014
  • This paper studies the energy efficiency power allocation for cognitive radio networks based on uplink orthogonal frequency-division multiplexing. The power allocation problem is intended to minimize the maximum energy efficiency measured by "Joule per bit" metric, under total power constraint and robust aggregate mutual interference power constraint. However, the above problem is non-convex. To make it solvable, an equivalent convex optimization problem is derived that can be solved by general fractional programming. Then, a robust energy efficiency power allocation scheme is presented. Simulation results corroborate the effectiveness of the proposed methods.

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권1호
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

Minimum BER Power Allocation for OFDM-based Cognitive Radio Networks

  • Xu, Ding;Li, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2338-2353
    • /
    • 2015
  • In this paper, the optimal power allocation algorithm that minimizes the aggregate bit error rate (BER) of the secondary user (SU) in a downlink orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) system, while subjecting to the interference power constraint and the transmit power constraint, is investigated under the assumption that the instantaneous channel state information (CSI) of the interference links between the secondary transmitter and the primary receiver, and between the primary transmitter and the secondary receiver is perfectly known. Besides, a suboptimal algorithm with less complexity is also proposed. In order to deal with more practical situations, we further assume that only the channel distribution information (CDI) of the interference links is available and propose heuristic power allocation algorithms based on bisection search method to minimize the aggregate BER under the interference outage constraint and the transmit power constraint. Simulation results are presented to verify the effectiveness of the proposed algorithms.

MF-TDMA 광대역 위성시스템을 위한 QoS 기반 최적 타임슬롯 할당 체계 (QoS-based Optimal Timeslot Allocation for MF-TDMA Broadband Satellite Systems)

  • 장근녕;이기동;박유진
    • 한국경영과학회지
    • /
    • 제29권4호
    • /
    • pp.141-157
    • /
    • 2004
  • In this paper, we consider broadband satellite systems using MF-TDMA(Multi-Frequency Time Division Multiple Access) scheme. First, we analyze return link, superframe structure, and QoS( Quality of Service) parameters in broadband satellite systems, and mathematically formulate the QoS-based optimal timeslot allocation problem as a nonlinear integer programming problem for broadband satellite systems with clear-sky and rain-fade satellite terminals, and multiple data classes. Next, we modify the proposed problem to solve it within in a fast time, and suggest the QoS-based optimal timeslot allocation scheme. Extensive simulation results show that the proposed scheme finds an optimal solution or a near optimal solution within 5ms at Pentium IV PC.

5GHz대역 초고속 무선랜의 주파수분배에 관한 연구 (A study on Spectrum Allocation for Very High Speed Wireless Access Network in 5GHz Band)

  • 허보진;이재욱;박덕규
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 춘계종합학술대회논문집
    • /
    • pp.474-479
    • /
    • 2003
  • 본 연구에서는 5㎓대역에 대한 각국의 전파 이용 현황, 주파수 및 국내외 정책동향을 분석하였으며, 각국의 초고속 무선접속 시스템에 대한 기술기준 내용과 5㎓대역의 ISM대역에 대한 주파수분배 내용을 연구하였다. 또한 초고속 무선접속시스템을 추진하기 위한 소요대역폭의 계산, 주파수 공유기법과 주파수의 효율적 이용 방안에 대한 연구를 수행하였다. 본 연구 내용을 바탕으로 5㎓초고속 무선접속시스템을 위한 주파수 확보 방안을 제시하여, 국내 주파수 정책 수립에 필요한 논리적인 근거를 마련함과 동시에 5㎓대역에 대한 주파수 분배 방안을 제시하였다.

  • PDF

An Efficient Adaptive Modulation Scheme for Wireless OFDM Systems

  • Lee, Chang-Wook;Jeon, Gi-Joon
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.445-451
    • /
    • 2007
  • An adaptive modulation scheme is presented for multiuser orthogonal frequency-division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit-loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit-loading algorithm determines the number of bits given to each subcarrier. The proposed bit-loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic-geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade-off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.

  • PDF

광대역 위성 네트워크를 위한 최적 버퍼 및 타임슬롯 할당 체계 (Optimal Buffer and Timeslot Allocation Scheme for Broadband Satellite Networks)

  • 장근녕;박유진
    • 한국경영과학회지
    • /
    • 제31권1호
    • /
    • pp.117-129
    • /
    • 2006
  • In this paper, we consider broadband satellite networks using MF-TDMA (Multi-Frequency Time Division Multiple Access) scheme. We analyze the number of expected lost packets in each terminal, and mathematically formulate optimal buffer and timeslot allocation model to minimize the weighted sum of the numbers of expected lost packets. We also suggest optimal buffer and timeslot allocation scheme based on Lagrangean relaxation technique to solve the proposed model in a fast time. Extensive experiments show that the proposed scheme provides encouraging results.

Adaptive Resource Allocation for MC-CDMA and OFDMA in Reconfigurable Radio Systems

  • Choi, Yonghoon
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.953-959
    • /
    • 2014
  • This paper studies the uplink resource allocation for multiple radio access (MRA) in reconfigurable radio systems, where multiple-input and multiple-output (MIMO) multicarrier-code division multiple access (MC-CDMA) and MIMO orthogonal frequency-division multiple access (OFDMA) networks coexist. By assuming multi-radio user equipment with network-guided operation, the optimal resource allocation for MRA is analyzed as a cross-layer optimization framework with and without fairness consideration to maximize the uplink sum-rate capacity. Numerical results reveal that parallel MRA, which uses MC-CDMA and OFDMA networks concurrently, outperforms the performance of each MC-CDMA and OFDMA network by exploiting the multiuser selection diversity.

Two-Stage Resource Allocation to Improve Utilization of Synchronous OFDM-PON Supporting Service Differentiation

  • Doo, Kyeong-Hwan;Bang, Junseong;Han, Man Soo;Lee, Jonghyun;Lee, Sangsoo
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.657-666
    • /
    • 2015
  • We propose a two-stage resource allocation algorithm for the high link utilization of an orthogonal frequency-division multiplexing passive optical network (OFDM-PON). An OFDM-PON is assumed to use a synchronous frame structure in supporting service differentiation. In distributing resources, the proposed algorithm first allocates a time window for each optical network unit (ONU), and then it arranges a subchannel, which is a group of subcarriers. This algorithm needs to satisfy two constraints. First, computations for the resource allocation should be done using a frame unit. Second, an ONU has to use a single subchannel to send upstream data for multiple services within a frame duration. We show through a computer simulation that the proposed algorithm improves the link utilization.

Dynamic power and bandwidth allocation for DVB-based LEO satellite systems

  • Satya Chan;Gyuseong Jo;Sooyoung Kim;Daesub Oh;Bon-Jun Ku
    • ETRI Journal
    • /
    • 제44권6호
    • /
    • pp.955-965
    • /
    • 2022
  • A low Earth orbit (LEO) satellite constellation could be used to provide network coverage for the entire globe. This study considers multi-beam frequency reuse in LEO satellite systems. In such a system, the channel is time-varying due to the fast movement of the satellite. This study proposes an efficient power and bandwidth allocation method that employs two linear machine learning algorithms and take channel conditions and traffic demand (TD) as input. With the aid of a simple linear system, the proposed scheme allows for the optimum allocation of resources under dynamic channel and TD conditions. Additionally, efficient projection schemes are added to the proposed method so that the provided capacity is best approximated to TD when TD exceeds the maximum allowable system capacity. The simulation results show that the proposed method outperforms existing methods.