• Title/Summary/Keyword: free radical damage

Search Result 377, Processing Time 0.026 seconds

Role of Calcium in Reperfusion Damage of Ischemic Myocardium; Influence on Oxygen Radical Production

  • Park, Jong-Wan;Kim, Myung-Suk;Park, Chan-Woong
    • Toxicological Research
    • /
    • v.4 no.1
    • /
    • pp.23-35
    • /
    • 1988
  • The role of calcium in the production of oxygen radical which causes reperfusion damage of ischemic heart has been examined. The reperfusion damage was indrced in isolated Langendorff perfused rat hearts by aortic clamping for 60 min followed by reperfusion with oxygenated Krebs-Henseleit solution with or without 1.25 mM $CaCl_2.$ On reperfusion of the ischemic hearts with the calcium containing solution, the release of cytosolic enzymes (LDH and CPK) increased abruptly. These increased release of enzymes were significantly inhibited by additions of oxygen radical scavengers (SOD, 5,000 U; catalase, 12,500 U) into the reperfusion solution. In the hearts isolated from rats pretreated with allopurinol(20 mg/kg orally, 24 hr and 2 hr prior to the experiments), the levels of enzymes being released during reperfusion were significantly lower than that of the control. However, in the hearts perfused with the calcium-free but oxygenated solution, the increase in the release of cytosolic enzymes during reperfusion was neither inhibited by oxygen radical scavengers nor by allopurinol pretreatment. For providing the evidence of oxygen radical generation during the reperfusion of ischemic hearts in situ, the SOD-inhibitable reduction of exogenously administered ferricytochrome C was measured. In the hearts perfused with the calcium containing solution, the SOD-inhibitable ferricytochrome C reduction increased within the first minute of reperfusion, and was almost completely inhibited by allopurinol pretreatment. When the heart was perfused with the calcium free solution, however, the reduction of ferricytochrome C was not only less than that in the calcium containing condition, but also was not so completely inhibited by allopurinol pretreatment. By ischemia, xanthine oxidase (XOD) in the ventricular tissue was changed qualitatively, but not quantitatively. In the heart made ischemic with the calcium containing condition, the oxygen radical producing O-form of XOD increased, while the D- and D/O-form decreased. However, in the ischemic heart reperfused with the calcium free condition, the D/O-form of XOD was elevated without significant increase in O-form of the enzyme. It is suggested from these results that the calclum may play a contributing role in the genesis of reperfusion damage by promoting the conversion of xanthine oxidase from the D/O-form to the oxygen radical producing O-form in the ischemic myocardium.

  • PDF

New anti-wrinkle cosmetics

  • Lee, Kang-Tae;Lee, Sun-Young;Jeong, Ji-Hean;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-79
    • /
    • 2002
  • In the aged skin especially in the face and eyelid, deep and slight wrinkles are one of the remarkable phenomena of aging and the cause of wrinkle is various. Among the cause of wrinkles an oxidative stress plays an important roles in wrinkle formation process. It caused the lipid peroxidation of cell membrane, the increase of the MMPs(MatrixMetalloProteinase) gene expression and cellular DNA damage. These ROS induced materials may cause the degradation of collagen matrix system in the dermis and cause the formation of skin wrinkle. So, it is very important for protecting skin wrinkle formation to regulate ROS activity. In this study, we developed one active ingredient having multi functional activities such as activation of collagen synthesis, inhibition of MMPs activity, lipid peroxidation and free radical scavenging activity and inhibition of free radical induced DNA damage in vitro. Pericarpium castaneae extracts showed collagen synthesis increase in Normal Human Fibroblast and the inhibition of elastase activity (IC$\_$50/ of Elastase: 43.9$\mu\textrm{g}$/㎖). It showed also anti-oxidative activity (IC$\_$50/ : 48$\mu\textrm{g}$/㎖) and free radical scavenging activity(IC$\_$50/: 7.6$\mu\textrm{g}$/㎖). Conclusively, Pericarpium castaneae extracts may be used as an ingredient for new anti-wrinkle cosmetics.

Depigmentation activity of plant extracts (Okyong-san)

  • Han, Sung-Chul;Lee, Young-Jin;Lee, Ki-Young;Kim, Yeon-Zu;Jin, Sang-Hyeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.794-798
    • /
    • 2003
  • The reactive oxygen species (or free radicals) generated by ultraviolet radiation cause damage on cellular components and pigment of skin. The aim of this study was to investigate the skin-whitenig effect of Okyong-san. Inhibitory effects of okyong-san extracts on melanin synthesis were studied. Namely, UV-absorbing ability, free radical scavenging activity and tyrosinase inhibitory activity of okyong-san extracts were investigated. As a result, the extracts of okyong-san were found to inhibit the activity of tyrosinase and they showed an absorbance in the UV-B region and UV-C region. We also observed that extracts of okyong-san had free radical scavenging activity.

  • PDF

Effect of Cyclohexane Treatment on the Liver Damage in CCl4-Pretreated Rats (CCl4전처치한 흰쥐에 Cyclohexane 투여가 간손상에 미치는 영향)

  • 윤종국;김현희
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2003
  • TO evaluate an effect of cyclohexane treatment on the degree of liver damage, rats were induced liver damage with 10 or 17 times $CCl_4$ injection (0.1 m1/100 g body wt., 50% $CCl_4$ dis-solved in olive oil) at intervals of every other day. Cyclohexane (1.56 g/kg body wt., i.p.) was administrated to the animals at 48 hours after the last pretreatment of $CCl_4$ . Rats were sacrificed at 4 hours after injection of cyclohexane. On the basis of histopathological findings, liver weight/body weight (LW/ BW, %), activities of serum alanine aminotransferase (ALT), xanthine oxidase (XO) and akaline phosphatase (ALP), and contents of liver protein and manlondialdehyde (MDA), $CCl_4$ -pretreatment induced liver damage. And $CCl_4$ 17 times treated group showed more severe liver damage than $CCl_4$ 10 times treated group. Administration of one dose of cyclohexane to $CCl_4$ 10 times treated animals resulted in the enhanced liver damage; liver necrosis with proliferation of fibroblast and bile duct abnormality, and increase in hepatic MDA content and the activities of serum ALP and ALT, But the enhanced liver damage was not found in $CCl_4$ 17 times treated animals. Serum cyclohexanone concentrations at 4 or 8 hours after injection of cyclohexane were higher in all liver damaged groups than normal group and were somewhat higher In $CCl_4$ 17 times treated animals than $CCl_4$ 10 times treated ones. Among the oxygen free radical metabolizing enzymes, hepatic cytochrome P45O dependent aniline hydroxylase (CYPdAH) activity in cyclohexane metabolizing enzyme system was meaningfully increased by the injection of cyclohexane to the liver damaged rats, with increased Vmax and high affinity to aniline. LW/BW (%) and activities of serum XO and ALT were more significantly increased in liver damaged groups than normal group by administration of cyclohexanone. In conclusion, it is assumed that an enhancement of liver damage by injection of one dose of cyclohexane to liver damaged animals might be caused by oxygen free radicals and cyclohexanone.

Free radical scavenging effect and protective activity from oxidative stress of broccoli flowers and sprouts (Broccoli flower와 Broccoli sprout의 라디칼 소거능 및 산화적 스트레스 개선 효과)

  • Kim, Hyun-Young;Lee, Young-A;Cho, Eun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this study, the antioxidative effect and protective potential against oxidative damage of extract and fractions from broccoli were investigated under in vitro and cellular system. The methanol (MeOH) extracts of broccoli flowers and sprouts were partitioned as dichloromethane, n-butanol (BuOH) and aqueous fractions. The comparison of antioxidative effect of broccoli flowers and sprouts showed that broccoli sprouts exerted the more effective protective activity from 2,2'-azobis (2-aminopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-$PK_1$ porcine renal epithelial cell. In addition, the extract and fractions from broccoli sprouts showed strong scavenging effect of 1,1-diphenyl-2-picrylhydrazyl radical and the BuOH fraction exerted the strongest activity. Therefore, the BuOH fraction was evaluated as the most active fraction with strong radical scavenging activity among the fractions of broccoli flowers and sprouts. The present study suggests the antioxidative potential against free radical-induced oxidative damage of flowers and sprouts of broccoli. In addition, the BuOH fraction of broccoli is considered as the active fraction with antioxidative effect.

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

  • Lin, Jing;Li, Xican;Chen, Li;Lu, Weizhao;Chen, Xianwen;Han, Lu;Chen, Dongfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1633-1638
    • /
    • 2014
  • [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

Study on the Effect of Gamigehyuldeung-tang on Gultamate Receptor, free Radical and Brain Damage in Rats (가미계혈등탕이 Glutamate receptor와 Free radical 및 뇌손상 보호에 미치는 영향)

  • An Jong suk;Kim Dong Hee;Kim Yun Sik;Lee Young Gu;Park Jong Ho;Namgung Uk;Seol In Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.728-737
    • /
    • 2003
  • This study was investigated to prove the effect of GMGHT on the gultamate receptor, free radical and brain damage in rats sujected to Brain Ischemia The results were as follows; 1, GMGHT showed significant inhibitory effect of GMGHT on LDH release induced by NMDA, AMPA, and kinate. 2. GMGHT showed significant inhibitory effect of GMGHT on LDH release induced by BSO and Fe/sup 2+/. 3. GMGHT decreased coma duration time in a infatal dose of KCN and showed 30% of survival rate in a fatal dose. 4. GMGHT decreased ischemic area and edema incited by the MCA blood flow block. 5. GMGHT showed improvement of forelimb and hindlimb test after MCA occulusion in neurological exemination. 6. GMGHT showed no significant change after MCA occulusion in pathological observation as normal group. These results indicate that GMGHT can be used in the brain damage sujected to Brain Ischemia. Further study will be needed about the functional mechanism and etc.

Anti-oxidant Effect of Agastache rugosa on Oxidative Damage Induced by $H_2O_2$ in NIH 3T3 Cell

  • Hong, Se-Chul;Jeong, Jin-Boo;Park, Gwang-Hun;Kim, Jeong-Sook;Seo, Eul-Won;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.498-505
    • /
    • 2009
  • The plant Agastache rugosa Kuntze has various physiological and pharmacological activities. Especially, it has been regarded as a valuable source for the treatment of anti-inflammatory and oxidative stress-induced disorders. However, little has been known about the functional role of it on oxidative damage in mammalian cells by ROS. In this study, we investigated the DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging capacity, and $Fe^{2+}$ chelating activity of the extracts from Agastache rugosa. In addition, we evaluated whether the extract can be capable of reducing $H_2O_2$-induced DNA and cell damage in NIH 3T3 cells. These extracts showed a dose-dependent free radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by $H_2O_2$. Therefore, these results suggest that Agastache rugosa is useful as a herbal medicine for the chemoprevention against oxidative carcinogenesis.

Carnosine and Related Compounds Protect against the Hydrogen Peroxide-Mediated Cytochrome c Modification

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.663-666
    • /
    • 2006
  • Carnosine, homocarnosine and anserine might act as anti-oxidants and free radical scavengers in vivo. In the present study, the protective effects of carnosine and related compounds on the $H_2O_2$-mediated cytochrome c modification were studied. Carnosine, homocarnosine and anserine significantly inhibited the oligomerization of cytchrome c induced by $H_2O_2$. All three compounds also inhibited the formation of carbonyl compound and dityrosine during the incubation of cytochrome c with $H_2O_2$. These compounds effectively inhibited the peroxidase activity in the cytchrome c treated with $H_2O_2$. The results suggested that carnosine, homocarnosine, and anserine might protect cytochrome c against $H_2O_2$-mediated oxidative damage through a free radical scavenging.

The Effect of Antioxidant-complex on Oxygen Free Radical Generating and Scavenging System in Rats

  • Doh Seong-Tak;Lee Sang-Il
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.49-52
    • /
    • 2006
  • To elucidate the effect of antioxidant complex containing $\beta-carotene$, vitamin E, vitamin C, Ginkgo Biloba leaf extract and selenium on oxygen :tree radical production and detoxification system, rats were fed normal diet and normal diet with antioxidant complex 0.1%, 0.3% and 0.5% for 3 weeks. Feed efficiency ratio, changes in body weight, weight gain and amounts of feces of rat are similar in four groups. Liver weight per body weight and hepatic lipid peroxide weight increased in 0.5% group. However, hepatic glutathione contents in all antioxidant complex added groups were significantly increased compare with normal control group. On the other hand, the activity of xanthine oxidase was a little increased due to the amounts of antioxidant complex. Superoxide dismutase and gutathione peroxidase activity of 0.1% antioxidant complex added group were increased about $10{\sim}20%$ in comparison to normal control group. These results suggest that the supplementation of antioxidant complex 0.1% to basal diet may reduce the hepatic damage caused by free radicals.

  • PDF