• Title/Summary/Keyword: free radical damage

Search Result 377, Processing Time 0.033 seconds

Mitochondria: multifaceted regulators of aging

  • Son, Jyung Mean;Lee, Changhan
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.13-23
    • /
    • 2019
  • Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging.

The Antioxidant Effect of Hot Water Extract from the Dried Radish (Raphanus sativus L.) with Pressurized Roasting (가압볶음 무말랭이 열수 추출물의 항산화 효과)

  • Song, Yeong-Bok;Choi, Jeong-Sun;Lee, Ji-Eun;Noh, Jeong-Sook;Kim, Mi-Jeong;Cho, Eun-Ju;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1179-1186
    • /
    • 2010
  • The antiradical property of hot water extract from dried radish (DR) or dried radish roasted with pressure (DRRP) was investigated in vitro and in LLC-PK1 cell system. The contents of total free amino acid and reducing sugar in DR were decreased by 72.86% and 3.17%, respectively, after pressurized roasting. In vitro test, $IC_{50}$ for DR and DRRP for DPPH radical scavenging activity were 646.70 and $135.45\;{\mu}g/mL$, 896.10 and $566.98\;{\mu}g/mL$ for superoxide anion radical, and 722.26 and $531.84\;{\mu}g/mL$ for hydroxy radical, respectively. The radical scavenging effects of DRRP was significantly greater than those for DR (p<0.001). These radical scavenging effects of DR and DRRP were confirmed in LLC-$PK_1$ at which oxidative stresses were induced by superoxide, nitric oxide and peroxynitrite generated in the treatment of pyrogallol, SNP, and SIN-1, respectively. Cell viability was increased in the presence of DR or DRRP, dose dependently (p<0.05), and TBARS formation was decreased. The protective effects of DRRP against oxidative damage in LLC-$PK_1$ were greater than those of DR at the same concentration tested (p<0.05). This superior antiradical activity of DRRP might be due to the products produced during the pressurized roasting in addition to the antioxidative compounds originally present in the radish. 5-hydroxyl methyl furfural (5-HMF) known as an intermediate product of the maillard reaction was detected in DRRP (0.57 mg/g), but not from DR. In conclusion, daily consumption of DRRP may prevent oxidative damage by retarding oxidative stress.

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

The role of antioxidant and DNA damage in the UVB-induced skin tumors of hairless mice

  • Bito, Toshinori;Budiyanto, Arief;Ueda, Masato;Ichihashi, Masamitsu
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.146-149
    • /
    • 2002
  • Oxidative stress evoked hy Ultraviolet (UV) exposure has been suggested to be involved in UV-induced skin carcinogenesis. In this study, the role of oxidative stress in UV-carcinogenesis was evaluated by applying N-Acetylcysteine (NAC) in animal model of hairless-mouse. NAC is known to be a precursor of glutathione, which was converted to glutathione in cytoplasm, acting as an intracellular free radical scavenger. The glutathione levels in hairless mouse skin after one time application of NAC increased significantly. With and without the pre-treatment of NAC, hairless-mice were exposed to UVB three times a week, at total dose 274.4 kJ in 80 times, and the timing of tumor-development, incidence of skin tumor and the histopathology of tumors were observed. 8-hydroxy-2'-deoxyguanosine (8-0HdG), a typical form of oxidative damage in DNA has been also investigated in the course of experiment. The decrease of 8-0HdG formation of UVB- exposed skin compared to controls was observed in the early stage of experiment in the NAC-treated mice. In addition, initial tumor development delayed significantly in NAC-treated group. Finally the number of the tumor developed in the NAC-treated mice was fewer though not significant. These results suggest that antioxidants may have inhibitory effect in the initial step of UVB-induced carcinogenesis of hairless mice.

  • PDF

Effects of Dancheonhwan on Hydrogen Peroxide-induced Apoptosis of H9c2 Cardiomyoblasts (단천환이 Hydrogen Peroxide에 의한 심근세포 독성에 미치는 영향)

  • Na Yeong Hun;Bak Sang Beom;Jeong Seung Won;Yun Jong Min;Lee In;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.774-782
    • /
    • 2004
  • The water extract of Dancheonhwan (DCH) has been used to treat ischemic brain and heart damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from ischemic damage. Therefore, this study was designed to investigate the protective mechanisms of DCH on the H₂O₂-induced toxicity in H9c2 cardiomyoblast cells. Treatment of H₂O₂ markedly decreased the viability of H9c2 cardiomyoblast in a dose-dependent and time-dependent manner. The nature of H₂O₂-induced toxicity of H9c2 cells resulted from apoptotic death confirmed with genomic DNA fragmentation. DCH increased the viability of H₂O₂-treated H9c2 cells by about 23%, and partially suppressed the genomic DNA fragmentation and PARP cleavage. H₂O₂ also activated caspase-3 protease and -9 protease, but not both caspase-6 protease and -8 protease. H₂O₂ induced the mitochondria dysfunction, including mitochondria membrane permeability transition (MPT) and cytosolic release of cytochrome c from mitochondria, which was prevented in part by pretreatment of DCH. N-acetylcystein (NAC), a free-radical scavenger, alone increased the viability of H₂O₂-treated H9c2 cells in a dose-dependent manner. Furthermore, the combination of NAC with DCH significantly increased the viability of the H₂O₂-treated H9c2 cells in a dose-dependent manner. These data indicate that DCH has the protective effect on ROS-induced apoptosis of cadiomyoblast H9c2 cells.

The impact of Caesalpinia Sappan L. on Oxidative Damage and Inflammatory Relevant Factor in RAW 264.7 Cells and HUVEC (소목(蘇木)이 산화적 손상 및 Raw 264.7 cell과 HUVEC에서의 염증 유관 인자에 미치는 영향)

  • Kang, Seong-Sun;Kim, Myung-Sin;Jo, Jae-Jun;Choi, Seong-An;Yang, Eui-Ho;Jeon, Sang-Yun;Choi, Chang-Won;Hong, Soek
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.100-111
    • /
    • 2013
  • Objectives : This study investigated the impact of Caesalpinia sappan L. on oxidative damage and inflammatory relevant factor in RAW 264.7 cells and human umbilical vein endothelial cells (HUVEC). Methods : We determined whether fractionated EtOH extracts of Caesalpinia sappan L. (CSL) inhibit free radical generation such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), reactive oxygen species (ROS) and nitric oxide (NO) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 cells and HUVEC. Result : 1. DPPH removal capacity was increased by CSL. 2. LPS-induced ROS, and NO inhibitory capacity were increased by CSL. 3. LPS-induced cell death of Raw 264.7 cells was decreased by CSL. 4. The amount of cytokine generation in Raw 264.7 cell was decreased significantly by CSL. 5. The amount of cytokine generation in HUVEC was decreased significantly by CSL. Conclusions : These results suggest that CSL supplement may attenuate oxidative stress by elevated antioxidative processes, and suppress inflammatory mediator activation.

Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity

  • Triastuti, Asih;Park, Hee-Juhn;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Oxidative stress is caused by an imbalance between the production of reactive oxygen and an ability of a biological system, to readily detoxify the reactive intermediates or easily repair the resulting damage. It has been suggested that developmental alloxan-induced liver damage is mediated through increases in oxidative stress. The anti-diabetic effect and antioxidant activity of Phaleria macrocarpa (PM) fractions were investigated in alloxan-induced diabetic rats. After two weeks administration of PM, the liver antioxidant enzyme and hyperglycemic state were evaluated. The results showed that oral administration of PM treatments reduced blood glucose levels in diabetic rats by oral administration (P < 0.05). Serum glutamic-oxaloacetic transaminase (sGOT) and serum glutamic-pyruvate-transaminase (sGPT) were also diminished by PM supplementation. The superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased (P < 0.05) compared to those in the normal rats but were restored by PM treatments. PM fractions also repressed the level of malondialdehyde (MDA) in the liver. Glutathione reductase (GR), glutathione-S-transferase (GST) and $\gamma$-glutamylcysteine synthase (GCS) were also reduced in alloxan-induced diabetic rats. PM fractions could restore the GR and GST activities, but the GCS activity was not affected in rat livers. From the results of the present study, the diabetic effect of the butanol fraction of PM against alloxan-induced diabetic rats was concluded to be mediated either by preventing the decline of hepatic antioxidant status or due to its indirect radical scavenging capacity.

Protective Effects of Acetylbergenin against Carbon Tetrachloride Induced Hepatotoxicity in Rats

  • Lim, Hwa-Kyung;Kim, Hack-Seung;Kim, Seung-Hwan;Chang, Myung-Jei;Rhee, Gyu-Seek;Choi, Jong-Won
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.114-118
    • /
    • 2001
  • The present study was undertaken to investigate whether or not the hepatoprotective activity of acetylbergenin was superior to bergenin in carbon tetrachloride ($CCl_4$)-intoxicated rat. Acetylbergenin was synthesized by acetylating bergenin, which was isolated from Mallotus japonicus. The hepatoprotective effects of acetylbergenin were examined against $CCl_4$-induced liver damage in rats by means of serum and liver biochemical Indices. Acetylbergenin was administered orally once daily for 7 successive days, then a 0.5 ${m/kg}$ mixture of $CCl_4$in olive oil (1:1) was intraperitoneally injected at 12 h and 36 h after the final administration of acetylbergenin. Pretreatment with acetylbergenin reduced the elevated serum enzymatic activities of alanine/aspartate aminotransferase, sorbitol dehydrogenase and $\gamma$-glutamyltransferase in a dose dependent fashion. Acetylbergenin also prevented the elevation of hepatic malondialdehyde formation and depletion of glutathione content dose dependently in $CCl_4$-intoxicates rats. In addition, the decreased activities of glutathione S-transferase and glutathione reductase were restored to almost normal levels. The results of this study strongly suggest that acetylbergenin n has potent hepatoprotective activity against $CCl_4$-induced hepatic damage in rats by glutathione-mediated detoxification as well as having free radical scavenging activity. In addition, acetylbergenin doses of 50 ${mg/kg}$showed almost the same levels of hepatoprotection activity as 100 ${mg/kg}$ of bergenin, indicating that lipophilic acetylbergenin is more active against the antihepatotoxic effects of $CCl_4$ than those of the much less lipophilic bergenin.

  • PDF

Antioxidant and Neuroprotective Effects of Perilla frutescens var. japonica Leaves (들깨 잎 추출물의 항산화 및 신경세포 보호작용)

  • Lee, Jong-Im;Jin, Chang-Bae;Ryu, Jae-Ha;Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The leaves of Perilla frutescens Britt. var. japonica Hara (Labiatae) are often used in gourmet food in several Asian countries. Two kinds of perilla cultivars, Namcheon (NC) and Bora (BR), have been respectively developed in Korea by the pure line of 'deulkkae' from the local variety and by the cross of 'deulkkae' and 'chajogi'. The present study evaluated and compared antioxidant and neuroprotective effects of the fractions prepared from the leaves of the two cultivars using cell-free bioassay systems and primary cultured rat cortical cells. We found that the spirit, chloroform, hexane and butanol fractions from NC and BR leaves inhibited lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In contrast, only the spirit and butanol fractions from both cultivars exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among the fractions tested, the butanol fractions from NC and BR leaves exhibited the most potent antioxidant properties, and the butanol fraction from BR was more potent than the NC fraction. In consistence with these findings, the butanol fractions from both cultivars protected primary cultured cortical cells from the oxidative damage induced by $H_2O_2$ or xanthine and xanthine oxidase, with the BR butanol fraction being more active. The butanol fractions from NC and BR did not produce cytotoxicity in our cultures treated for 24 h at the concentrations of up to $100\;{\mu}g/ml$. Taken together, these results indicate that the leaves of the two cultivars of Perilla frutescens exert antioxidant and neuroprotective effects, and that the butanol fraction from BR leaves exhibits the most potent antioxidative neuroprotection among the fractions tested in this study.

Study on the Protective Effect of Corni Fructus against Free Radical Mediated Liver Damage (산수유의 유리자유기에 의한 간손상 보호효과)

  • Ha, Ki-Tae;Kim, Young-Mi;Kim, Cheorl-Ho;Kim, Dong-Wook;Choi, Dall-Yeong;Kim, June-Ki
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1415-1423
    • /
    • 2007
  • Carbon tetrachloride ($CCl_4$)-induced liver injury depends on a toxic agent that has to be metabolized by the liver NAPDH-cytochrome P450 enzyme system to a highly reactive intermediate. Alternations in the activity of cytochrome P450 enzymes affect the susceptibility to hepatic injury from $CCl_4$. In this study, we evaluated the potential protective activity of the traditional Korean medicinal herb, Corni fructus (CF), against an experimental model of hepatotoxicity induced by $CCl_4$. The CF exhibited a hepatoprotective activity against $CCl_4-induced$ liver damage in Sprague-Dawley (SD) rats, as measured by GOT, GPT, ALP and histological observation. The CF also showed significant decrease of malodialdehyde (MDA) and increase of glutathion (GSH), catalase activity in rat liver homogenate. In addition, the expression of CYP2E1, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, was significantly decreased in the liver of CF treated SD rats. But $CCl_4$ and CF has no significant effect on 1A1 and 3A1 isoform of cytochrome P450. Based on these findings, it is suggested that hepatoprotective effects of CF possibly related to antioxidative effects and regulation of CYP2E1 expression.