• Title/Summary/Keyword: free formulation

Search Result 546, Processing Time 0.027 seconds

A high precision shear flexible element for bending analysis of thick/thin triangular plate

  • Haldar, S.;Das, P.;Manna, M.C.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2004
  • A high precision shear deformable triangular element has been proposed for bending analysis of triangular plate. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has thirty-five degrees of freedom, which has been reduced to thirty by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different boundary conditions, side ratios (b/a) and thickness ratios (h/a = 0.001, 0.1 and 0.2) have been analyzed using the proposed shear locking free element. Concentrated and uniformly distributed transverse loads have been used for the analysis. The formulation is made based on first order shear deformation theory. For validation of the present element and formulation few results of thin triangular plate have been compared with the analytical solutions. Results for thick plate have been presented as new results.

Vibration behaviour of axially compressed cold-formed steel members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.221-236
    • /
    • 2006
  • The objective of this work is to describe the main steps involved in the derivation of a GBT (Generalised Beam Theory) formulation to analyse the vibration behaviour of loaded cold-formed steel members and also to illustrate the application and capabilities of this formulation. In particular, the paper presents and discusses the results of a detailed investigation about the local and global free vibration behaviour of lipped channel simply supported columns. After reporting some relevant earlier GBT-based results dealing with the buckling and vibration behaviours of columns and load-free members, the paper addresses mostly issues concerning the variation of the column fundamental frequency and vibration mode nature/shape with its length and axial compression level. For validation purposes, some GBT-based results are also compared with values obtained by means of 4-node shell finite element analyses performed in the code ABAQUS.

Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling

  • Kablia, Aicha;Benferhat, Rabia;Tahar, Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.389-409
    • /
    • 2022
  • During the manufacture of FGM plates, defects such as porosities can appear. Those can change the entire behavior of these plates. This paper aims to investigate the free vibration characteristics of porous functionally graded (FG) plates resting on elastic foundations. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power-law formulation, and the Poisson ratio is held constant. Different types of porosity distribution rates are considered. To examine the accuracy of the present formulation, several comparison studies are investigated. Effects of variation of porosity distribution rate, foundation parameter, power-law index and thickness ratio on the fundamental frequency of plates have been investigated.

Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells (활절로 지지된 원통형 적층복합쉘의 기하학적 비선형 해석)

  • Han, Sung-Cheon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the anisotropic composite material. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present approach and the accuracy of the developed shell element.

Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.733-762
    • /
    • 2016
  • Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.

EAS Solid Element for Free Vibration Analysis of Laminated Composite and Sandwich Plate Structures (적층된 복합 및 샌드위치 판 구조의 자유진동 해석을 위한 EAS 고체 유한요소)

  • Park, Dae-Yong;Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.22-30
    • /
    • 2012
  • This study deals with an enhanced assumed strain (EAS) three-dimensional element for free vibration analysis of laminated composite and sandwich structures. The three-dimensional finite element (FE) formulation based on the EAS method for composite structures shows excellence from the standpoints of computational efficiency, especially for distorted element shapes. Using the EAS FE formulation developed for this study, the effects of side-to-thickness ratios, aspect ratios and ply orientations on the natural frequency are studied and compared with the available elasticity solutions and other plate theories. The numerical results obtained are in good agreement with those reported by other investigators. The new approach works well for the numerical experiments tested, especially for complex structures such as sandwich plates with laminated composite faces.

Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End (끝단에 스프링과 질량을 가진 단진보의 자유진동해석)

  • Yu, Chun-Seung;Hong, Dong-Pyo;Chung, Tae-Jin;Chung, Kil-To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

Liposomes for Solubilization and Delivery of Curcumin into Leukemia Cells

  • Jang, Rae-Sung;Kim, Eun-Joong;Suh, Min-Sung;Shim, Ga-Yong;Shim, Chang-Koo;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.293-297
    • /
    • 2006
  • Curcumin is a phytochemical compound with anticancer activity. Although curcumin has substantial pharmacological effect against various cancers, the low solubility of curcumin has hindered its development. For an organic solvent-free injectable formulation, we encapsulated curcumin in various liposomes. Due to its lipophilic property, curcumin was placed in the membrane region of liposomes. Curcumin was stably encapsulated in all formulations tested in this study. The cellular uptake of curcumin delivered in liposomal formulations or free form was measured in K562 human leukemia cell lines using a flow cytometry and MTT viability assay, respectively. Although all the liposomes could solubilize curcumin, the cellular levels and the anticancer effects of liposomal curcumin varied with the composition of liposomes. Moreover, liposomal curcumin down-regulated the expression of Notch-1, the molecule involved in the carcinogenesis, to the similar extent to free curcumin dissolved in dimethyl sulfoxide. These results warrant the development of liposomal curcumin as an injectable formulation for leukemia treatment.

Dynamic Stability of a Free-Free Beam with a Tip Rigid Body under a Controlled Pulsating Thrust (끝단 강체를 갖고 맥동 제어추력을 받는 양단 자유보의 동적 안정성)

  • Ryu, Bong-Jo;Lee, Gyu-Seop;Seong, Yun-Gyeong;Choe, Bong-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.232-239
    • /
    • 2000
  • The paper describes the parametric instability of free-free beams subjected to a controlled pulsating follower force. The beam has a tip rigid body not a mass point, and the direction of pulsating follower force is controlled by the direction control sensor. Equations of motion are derived by Hamilton's principle and the instability regions are obtained by finite element formulation. The effects of magnitude, rotary inertia, the distance between free end of the beam and the center of gravity of the rigid body on the instability types and regions are investigated by the change of the constant and periodic part of the follower force.

A time-domain analysis for a nonlinear free-surface problem (시간영역에서의 비선형 자유표면파문제에 대한 수치해석)

  • Kyoung Jo Hyun;Bai Kwang June;Chung Sang Kwon;Kim Do Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF