Browse > Article
http://dx.doi.org/10.12989/sem.2016.57.4.733

Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation  

Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan)
Publication Information
Structural Engineering and Mechanics / v.57, no.4, 2016 , pp. 733-762 More about this Journal
Abstract
Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.
Keywords
thick shell panel; interlaminar stresses; layerwise theory; cross-ply laminate; free edge; simply supported edge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Varadan, T.K. and Bheskar, K. (1991), "Bending of laminated orthotropic cylindrical shells- an elasticity approach", Compos. Struct., 17(2), 141-156.   DOI
2 Waltz, T.L. and Vinson, J.R. (1976), "Interlaminar stresses in laminated cylindrical shells of composite material", AIAA J., 14(76), 1213-1218.   DOI
3 Wang, A.S.D. and Crossman, F.W. (1977a), "Edge effects on thermally induced stresses in composite laminates", J. Compos. Mater., 11(3), 300-312.   DOI
4 Wang, A.S.D. and Crossman F.W. (1977b), "Some new results on edge effect in symmetric composite laminates", J. Compos. Mater., 11(1), 92-106.   DOI
5 Wang, S.S. and Choi, I. (1982a), "Boundary-layer effects in composite laminates. Part II: Free-edge stress solutions and basic characteristics", ASME J. Appl. Mech., 49(3), 549-560.   DOI
6 Wang, S.S. and Choi, I. (1982b), "Boundary-layer effects in composite laminates. Part I: Free-edge stress singularities", ASME J. Appl. Mech., 49(3), 541-548.   DOI
7 Wang, X. and Li, S.J. (1992), "Analytical solution for interlaminar stresses in a multilaminated cylindrical shell under thermal and mechanical loads", Int. J. Solid. Struct., 29(10), 1293-1302.   DOI
8 Wang, X., Cai, W. and Yu, Z.Y. (2002), "An analytic method for interlaminar stress in a laminated cylindrical shell", Mech. Adv. Mater. Struct., 9(2), 119-131.   DOI
9 Whitcomb, J.D., Raju, I.S. and Goree, J.G. (1982), "Reliability of the finite element method for calculating free edge stresses in composite laminates", Comput. Struct., 15(1), 23-37.   DOI
10 Wu, H. and Yan, X. (2005), "Interlaminar stress modeling of composite laminates with finite element method", J. Reinf. Plast. Compos., 24(3), 235-258.   DOI
11 Wu, Z. and Chen, W. (2010), "A global-local higher order theory including interlaminar stress continuity and $C^0$ plate bending element for cross-ply laminated composite plates", Comput. Mech., 45(5), 387-400.   DOI
12 Ahmadi, I. (2005), "Analysis of interlaminar stresses in thin composite shells", MSc. Thesis, Sharif University of Technology, Tehran, Iran.
13 Ahn, J.S. and Woo, K.S. (2014), "Interlaminar stress distribution of laminated composites using the mixeddimensional transition element", J. Compos. Mater., 48(1), 3-20.   DOI
14 Bheskar, K. and Varadan, T.K. (1993), "Interlaminar stresses in composite cylindrical shells under transient loads", J. Sound Vib., 168(3), 469-477.   DOI
15 Chaudhuri, R.A. (1990), "On the prediction of interlaminar stresses in a thick laminated general shell", Int. J. Solid. Struct., 26(5-6), 499-510.   DOI
16 Franklin, H.G. and Kicher, T.P. (1968), "Stresses in laminated composite cylinders", AIAA J., 6(11), 2208-2209.   DOI
17 Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", Int. J. Solid. Struct., 37(3), 435-459.   DOI
18 Ding, S., Tong, J.W., Shen, M. and Huo, Y. (2010), "Three-Dimensional elastic-plastic analysis of the interlaminar stresses for the AS4/PEEK composite laminate with a circular hole", Mech. Adv. Mater. Struct., 17(6), 406-418.   DOI
19 Fagiano, C., Abdalla, M.M. and Gurdal, Z. (2010), "Interlaminar stress recovery of multilayer composite shell structures for three-dimensional finite elements", Finite Elem. Anal. Des., 46(12), 1122-1130.   DOI
20 Fung, Y.C. and Tong, P. (2001), Classical and Computational Solid Mechanics, World Scientific, New Jersey.
21 Herakovich, C.T. (1998), Mechanics of Fibrous Composite, John Wiley & Sons, New York.
22 Hsu, P.W, and Herakovich, C.T. (1977), "Edge effects in angle-ply composite laminate", J. Compos. Mater., 11(4), 422-428.   DOI
23 Huang, B. and Kim, H.S. (2015), "Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method", Int. J. Mech. Sci., 90(1), 16-24.   DOI
24 Isavand, S., Bodaghi, M., Shakeri M. and Mohandesi J.A. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel Compos. Struct., 18(1), 1-28.   DOI
25 Kant, T. and Menon, M.P. (1991), "Estimation of Interlaminar Stresses in Fiber Reinforced Composite Cylindrical Shells", Comput. Struct., 38(2), 131-147.   DOI
26 Kim, H.S., Zhou, X. and Chattopadhyay, A. (2002), "Interlaminar stress analysis of shell structures with piezoelectric patch including thermal loading", AIAA J., 40(12), 2517-2525.   DOI
27 Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75.   DOI
28 Kapoor, H., Kapania, R.K. and Soni, S.R. (2013), "Interlaminar stress calculation in composite and sandwich plates in NURBS isogeometric finite element analysis", Compos. Struct., 106(1), 537-548.   DOI
29 Kar, V.R., Mahapatra, T.R. and Subrata, K.P. (2015), "Nonlinear flexural analysis of laminated Composite flat Panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033.   DOI
30 Li, S., Wang, R. and Luo, Z. (1985), "An analytic solution for interlaminar stresses in a fiber reinforced double-layer cylindrical shell", Acta Mech., 1 (2), 159-170.   DOI
31 Miri, A.K. and Nosier, A. (2011), "Interlaminar stresses in antisymmetric angle-ply cylindrical shell panels", Compos. Struct., 93(2), 419-429.   DOI
32 Most, J., Stegmair, D. and Petry, D. (2015), "Error estimation between simple, closed-form analytical formulae and full-scale FEM for interlaminar stress prediction in curved laminates", Compos. Struct., 131(1), 72-81.   DOI
33 Murthy, P.L.N. and Chamis, C.C. (1989), "Free-edge delamination: laminate width and loading conditions effects", J. Comp. Technol. Res., 11(1), 15-22.   DOI
34 Pipes, R.B. and Daniel, I.M. (1971), "Moire analysis of the interlaminar shear edge effect in laminated composites", J. Compos. Mater., 5(2), 255-259.   DOI
35 Ramalingeswara, R. and Ganesan, N. (1997), "Interlaminar stresses in spherical shell", Comput. Mater. Struct., 65(4), 575-583.   DOI
36 Pipes, R.B. and Pagano, N.J. (1974), "Interlaminar stresses in composite laminates-an approximate elasticity solution", J. Appl. Mech., 41(3), 668-672.   DOI
37 Pipes, R.B. and Pagano, N.J. (1970), "Interlaminar stresses in composite laminates under uniform axial extension", J. Compos. Mater., 4(4), 538-548.   DOI
38 Ramalingeswara, R. and Ganesan, N. (1996), "Interlaminar stresses in shells of revolution", Mech. Comp. Mater. Struct., 3(4), 321-329.   DOI
39 Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York.
40 Ren, J.G. (1987), "Exact solution for laminated cylindrical shell in cylindrical bending", Compos. Sci. Tech., 29(3), 168-187.
41 Sarvestani, H.Y. and Sarvestani M.Y. (2011), "Interlaminar stress analysis of general composite laminates", Int. J. Mech. Sci., 53(11), 958-967.   DOI
42 Shim, D.J. and Lagace, P. A. (2005), "An analytical method for interlaminar stresses due to global effects of ply drop-offs", Mech. Adv. Mater. Struct., 12(1), 21-32.   DOI
43 Tahani, M. and Nosier, A. (2003), "Free edge stress analysis of a general cross-ply composite laminates under extension and thermal loading", Compos. Struct., 60(1), 91-103.   DOI
44 Tang, S. and Levy, A. (1975), "A boundary layer theory-part II: extension of laminated finite strip", J. Compos. Mater., 9(1), 42-52.   DOI
45 Tong, J.W., Xie, M.Y. and Shen, M., and Li, H.Q. (2001), "The Interlaminar Stresses of Symmetric Composite Laminates", J. Reinf. Plast. Compos., 20(13), 1171-1182.   DOI