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A bstract: In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is 
presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout 
the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation 
compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant- 
stress shell element is presented for the anisotropic composite material. The element is free of both membrane and 
shear locking behavior by using the assumed natural strain method such that the element performs very well in thin 
shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. 
Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present 
approach and the accuracy of the developed shell element. 
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1. Introduction 

Composite structures offer an attractive alternative to 
more conventional forms of construction due to its high 
strength to weight ratio and resistance to corrosion.  
Recently, there has been a major emphasis made on 
the use of FRP composite materials as a means of 
developing new high performance alternative materials 
for infrastructure applications such as seismic column 
wrapping and lightweight deck development. 

The modeling of shell structures represents a challenging 
task since the early developments of the finite element 
method. In fact, papers on the subject (focusing on 
computational aspects) can be traced back to the original 

work of Ahmad et al. (1970). This work represented the 
onset of the so-called degenerated approach, with a 
three-dimensional continuum being modeled by means 
of a reference surface. Following this concept, isoparametric 
finite elements were formulated using independent rotational 
and displacements degrees of freedom. Further, normal 
stresses in the direction of the shell thickness were not 
included in the formulation. The original concept was 
then extended to the non-linear range in the works of 
Hughes and Liu (1981) and Liu et al. (1986), among 
many others.

In large deformation analysis, the linearized non-linear 
equation has to be derived in order to solve the non-linear 
equations of the structural system via Lagrangian formulations. 
Kanok-Nukulchai and Wong (1988) introduced a new 
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Lagrangian formulation referred to as the Element- 
Based Lagrangian Formulation (ELF) since the parental 
element serves as a deformation reference in ELF. It 
means that all equations governing a deformed body 
can be expressed with respect to natural coordinate 
systems and so it appears in a simpler form than those 
of the traditional Lagrangian approaches. Lee and 
Kanok-Nukulchai (1998) presented a 9-node shell element 
using an Element-Based Lagrangian Formulation concept 
for large deformation analysis of shell structures. The 
Element-Based Lagrangian Formulation makes implementation 
simpler and easier than the traditional Lagrangian 
formulations, especially when the assumed natural strain 
method is involved. The shell element is based on the 
resultant-stress theories with the transverse shear 
deformation. By using the assumed strain methods, the 
shell element is free of the membrane and shear locking 
in the thin shell limit. All the results have very good 
agreement with references. 

However, the development of laminated shell elements 
for large deformation analysis has been less attempted, 
than those of single layered isotropic shell elements. In 
order to develop a laminated shell element for large 
deformation analysis, a very similar development procedure 
to that of the single layered shell elements is needed. 
However, the equivalent constitutive equation should be 
utilized for the computationally efficient composite 
element. The resultant shell element concept used an 
equivalent constitutive equation model which obtains 
the constitutive law of the equivalent medium in terms 
of the properties of the individual layers. Recently, Han 
et al. (2004, 2006, 2008(a), 2008(b), 2011) and Park et 
al. (2010) presented linear and nonlinear analysis of 
laminated composite plates and shells.

The objective of this paper is to present the 
formulation of a geometrically nonlinear 9-node shell 
element based on the resultant-stress formulation and its 
application to geometrical nonlinear analysis of laminate 
composite shell structures. The ELF concept is adopted 
to present the initial configuration and deformed configurations 
of the present finite element. The assumed natural 
strain method has been used to remove the locking 
problems by the ELF form. The formulation of the 
resultant shell element is based on Mindlin-Reissner 
theory, assuming small strains and large rotations. The 
geometric stiffness is analytically integrated through the 
thickness. In comparison with volume integration, which 
is generally used in the degenerated shell elements, the 

computational time is significantly reduced for geometrically 
nonlinear analysis of laminated composite structures. 

2. Geometry and Kinematics of the Shell 

Element

Generally the Lagrangian formulations for geometric 
nonlinear case can be classified into two approaches: 
namely, (1) Total Lagrangian Formulation (TLF), where 
all the static and kinematic variables are referred back 
to the initial undeformed configuration (), (2) 
Updated Lagrangian Formulation (ULF), where all are 
referred to the current deformed configuration ().

Wong (1984) has proposed a new variation of Lagrangian 
formulation known as Element-based Lagrangian Formulation 
(ELF), where all the static and kinematic variables are 
referred to a nonphysical “Element-based” configuration 
( ) as shown in Fig. 1. Unlike the two traditional 
Lagrangian formulations, a standard parental element 
serving as the reference of deformation is to be 
mapped directly into each element of the initial and 
deformed configurations in the Element-based Lagrangian 
Formulation. Therefore, all balance equations governing 
the deformed configuration can be expressed over the 
parental element domain in terms of the element natural 
co-ordinates. It should be noted that these three approaches 
for a problem should theoretically yield the same result.

t 1B +

B∂

j 1
tB +∂

j
tB∂

Fig. 1 The Element-Based Lagrangian Formulation method
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Fig. 2 Geometry of 9-node shell element with six degrees 
of freedom

The geometry of 9-node shell element shown in Fig. 
2 has six degrees of freedom per node. The initial 
geometry of the nine-node Lagrangian element shown 
in Fig. 3 is defined by the following relations. The 
initial configuration of the shell element having 
constant thickness  can be written as

1 2 3 1 2 1 2 3( , , ) ( , ) ( , , )X X Dξ ξ ξ ξ ξ ξ ξ ξ= +

(1)

where 
9

1 2 1 2
1

( , ) ( , )a a

a
Nξ ξ ξ ξ

=

= ∑X X

9

1 2 3 1 2
1

( , , ) ( , )a a

a

Nξ ξ ξ ξ ξ
=

= ∑D D

3
3

ˆ( )
2

a
a ah ξξ =D D

              
(2)

 where   are position vectors at midsurface which 
have three Cartesian components,  are nine unit 
normal vectors and  is a unit normal vector at 
node a.

Fig. 3 Initial and deformed geometries of a shell element

The following relations are introduced for the 
definition of deformed geometry of the element.

9
3

1 2 3 1 2 3
1

ˆ( , , ) ( , )
2

a
a a

a

hN ξξ ξ ξ ξ ξ ξ
=

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
∑ ax x d x d

  

(3)

In Eq. (3), , a
ax,x,d ,x d  and d̂ a  in the deformed 

geometry correspond to ,a aX,X,D ,X D  and ˆ aD  in 
Eqs. (1)-(2). Hence, the displacement field u in the 
shell element can be defined as

9
3

1 2 3 1 2 3
1

ˆ( , , ) ( , )
2

a
a a a

a

hN ξξ ξ ξ ξ ξ ξ
=

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
∑u u e u e

(4)

where, at the node a  the translational displacement 
vector a a au = x - X , and the fibre displacement 
vector ˆˆ

aa ae = d - D .
The translation displacement field can be expressed 

by shape functions in terms of nodal translational as 
shown in the first part of the right-hand side of Eq. (4). 

The three successive rotations 1 2,θ θ  and 3θ  have 
been introduced to express finite rotational displacement 
instead of the Euler angle which usually guarantees the 
independence of two rotations in the Lagrangian formulation 
since six degrees of freedom are adopted in the present 
study. If we introduce another set of Cartesian co-ordinates 
at the nodal points with the assumption that the unit 
normal vectors are firmly fixed into it and they move 
with the body, rotations which are undergone by the unit 
normal vector during deformation could be expressed 
elegantly via this co-ordinate set.

Basically, the transformation matrices for these 
rotations are 

1 1 1 1

1 1

1 0 0
( ) 0 cos sin

0 sin cos
RT θ θ θ

θ θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

2 2

2 2

2 2

cos 0 sin
( ) 0 1 0

sin 0 cos
RT

θ θ
θ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦     

3 3

3 3 3 3

cos sin 0
( ) sin cos 0

0 0 1
RT

θ θ
θ θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦               (5)
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However, it is important to note that three successive 
rotations used in this study lost their vectorial characteristics 
which remained in the cases when the rotations were 
infinitesimal. After undergoing three rotations successively, 
the transformation matrix between the initial shell 
normal and the deformed normal can be written as the 
result of a sequence of finite rotations 1 2,θ θ  and 

3θ  as follows;

         

  

                                             (6)
Consequently, using the transformation matrix of Eq. 

(6), the displacement field in Eq. (4) can be expressed as
9

3
1 2 3 1 2 3 3

1

ˆ( , , ) ( , ) ( )
2

a
a a a a

a

hN ξξ ξ ξ ξ ξ ×
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ Ru u T - I D

            (7)
where 3 3I ×  is a unit matrix.
In addition, with some mathematical manipulation, 

the incremental form of the displacement field for the 
present shell element may be written in terms of the 

nodal incremental vector aΔU  as
9

1 2 3 1 2 3 3 3
1

( , , ) ( , )a a a

a
Nξ ξ ξ ξ ξ ξ×

=

⎡ ⎤= ⎣ ⎦∑Δu I V ΔU

   (8)
where

2

a
a a ah
= R AV T Φ T ,    

{ }1 2 3 1 2 3, , , , ,a a a a a a au u u= Δ Δ Δ Δθ Δθ ΔθΔU    (9)

in which

3 2

3 1

2 1

0

0

0

a a

a a

a a

D D

D D

D D

⎡ ⎤−⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

aΦ

;               

2 3 3

2 3 3

2

cos cos sin 0
cos sin cos 0

sin 0 1

θ θ θ
θ θ θ
θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

AT
            (10-1, 2)

3. Natural Strain Tensor 

In the Element-based Lagrangian formulation, an 
Element-based strain tensor will be defined with respect 

to the convected curvilinear coordinates 1 2 3( , , )ξ ξ ξ  as

( )1
2

E g Gαβ αβ αβ= − (11)

in which gαβ  and Gαβ  are the covariant 
components of the metric tensors to be obtained from 

the basis vector i
i

xg α
αξ

∂
=

∂
I  and I

I
XG β

βξ
∂

=
∂

I  

which are tangents to the curvilinear coordinate lines in 
tB  and 0B  respectively, i.e.,

i ix xg g gαβ α β
α βξ ξ

∂ ∂
= ⋅ =

∂ ∂ , 

I IX XG G Gαβ α β
α βξ ξ

∂ ∂
= ⋅ =

∂ ∂ (12)

Two major different definitions of strain, the so-called 
Lagrangian strain and the Eulerian strain, which depend 
on the reference system measuring the deformation, have 
been extensively used in the formulation of large deformation 
analysis. However, since the formulation used in this 
study refers to the natural reference system, following 
the element-based Lagrangian formulation (Kanok-Nukulchai 
and Wong, 1988), the natural strain tensor corresponding 
to the Green strain tensor may be defined as

1
2

i i I Ix x X XE α β
α β α βξ ξ ξ ξ

⎛ ⎞∂ ∂ ∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ (13)

It should be noted that the Green strain tensor and 
the natural strain have the following tensor transformation 
relationship.

JI
I J

XXE Eα β
α βξ ξ

∂∂
=

∂ ∂

1
2

J JI I K Ku XX u u u

α β α β α βξ ξ ξ ξ ξ ξ

⎡ ⎤∂ ∂∂ ∂ ∂ ∂⎢ ⎥= + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

(14)

By substituting Eq. (1) and Eq. (4) in Eq. (14), and 
using a shifter transformation between the local and 
global displacement, the following strain-displacement 
relation can be obtained
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( ) ( ) ( ) ( )3 33 31
2

I I J JI I J JX D X Du e u e
Eαβ

α β α β

ξ ξξ ξ
ξ ξ ξ ξ

⎡∂ + ∂ +∂ + ∂ +⎢= +⎢ ∂ ∂ ∂ ∂⎢⎣  

( ) ( )3 3K K K Ku e u e

α β

ξ ξ
ξ ξ

⎤∂ + ∂ + ⎥+ ⎥∂ ∂ ⎥⎦ (15) 

The incremental membrane, bending and transverse 
shear strains with Eq. (9) can be separated into linear 
and nonlinear parts such as:

m L m NL mE E EΔ = Δ + Δ
b L b NL bE E EΔ = Δ + Δ
s L s N L sE E EΔ = Δ + Δ (16)

where

1
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1

1 1

2
3

2 2

1 2

1 2 2 1

0 0

0  0

1 1 0
2 2

L b

D

DE

D D

ξ ξ

ξ
ξ ξ

ξ ξ ξ ξ

⎡ ∂ ∂
⎢

∂ ∂⎢
⎢ ∂ ∂⎢Δ =

∂ ∂⎢
⎢

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎢ ⎜ ⎟ ⎜ ⎟⎢ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣
 

11

1 1 2

32
3

12 2

21 2

31 2 2 1

  0 0

0 0

1 1 0
2 2

uX
u
uX
e
eX X
e

ξ ξ

ξ
ξ ξ

ξ ξ ξ ξ

⎤ Δ⎧ ⎫∂ ∂
⎥ ⎪ ⎪∂ ∂ Δ⎥ ⎪ ⎪
⎥ ⎪ ⎪Δ∂ ∂ ⎪ ⎪⎥ = Δ⎨ ⎬Δ∂ ∂ ⎥ ⎪ ⎪
⎥ ⎪ ⎪Δ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ⎥ ⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎥ Δ⎪ ⎪∂ ∂ ∂ ∂ ⎩ ⎭⎝ ⎠ ⎝ ⎠ ⎦

bB U

(18)
 

1
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3
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3

21 1

3

1 10 0 0 0
2 2
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2 2

L s

u
X uD

u
E

eXD e
e

ξ ξ

ξ ξ

Δ⎧ ⎫
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sB U
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In Eq. (18), bB  is the bending strain matrix which 
cooperates the coupling term between the bending 
strain and displacement, which is different from the 

formulation by Lee and Kanok-Nukulchai (1998). The 

additional terms in the two first columns of bB  reflect 
the contributions of warping problem shown in the 
numerical examples 1.

The present strain-displacement B  matrix may be 
derived from the assumed displacement field using the 
above definition.

3 3
6 1

8 1 8 6

0m

b1 b2

s1 s2

B
u

Β B
θ

B B
ξ ξ

×

× ×

⎧ ⎫ ⎡ ⎤Δ
Δ⎧ ⎫⎪ ⎪ ⎢ ⎥Δ =⎨ ⎬ ⎨ ⎬⎢ ⎥ Δ⎩ ⎭⎪ ⎪ ⎢ ⎥Δ⎩ ⎭ ⎣ ⎦

L
m

L
b

L
s

E
E
E      

(20)

In order to remove the locking behaviour, the assumed 
natural strains described in the following section have 

been derived and a new A SB  matrix has been 
implemented instead of using the standard B  matrix. 

4. Transverse Shear and Membrane Locking 

In order to avoid locking problems, the assumed 
natural strain method in the 8-node shell element by 
Kim et al. (2003) is used to the 9-node composite 
shell element. Thus the transverse shear and membrane 
strain fields are interpolated with the following 
sampling points in Fig 4.

(a) Membrane normal strain

 

(b) Membrane shear strain
   

Fig. 4 Sampling points for assumed strains of 11 13e ,e , 

22 23e ,e  and 12e
 ( a : 1 3 , c : 1.0) 
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{ }
1

1 1
1 1 1

1 1

e = H ,L m X u
δ

ξ ξ
⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪Δ Δ⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

{ }
1

2 2
2 2 2

2 2

e = H ,L m X u
δ

ξ ξ
⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪Δ Δ⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

2

12 1 2
1 2

21 2 2 1

1 1e = H
2 2

L m uX X
u

δ

ξ ξ ξ ξ
⎧ ⎫Δ⎡ ⎤ ⎧ ⎫∂ ∂∂ ∂⎪ ⎪Δ ⎨ ⎨ ⎬ ⎬⎢ ⎥ Δ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭⎣ ⎦⎩ ⎭

The interpolation function for assumed natural strain 
is shown in the following Table 1.

For assumed membrane strains 1 1 2 2e , e  and 

assumed transverse shear strain 1 3 2 3e , e  the following 
sampling points are used as shown in Figure 4:

13 11e ,e  >> 

1(1 / 3 , 1 ) : 2(1 / 3 , 0 ) : 3(1 / 3 , 1)− :

4( 1 / 3 ,1)− : 5( 1 / 3 , 0 )− : 6( 1 / 3 , 1)− −

23 22e ,e  >>

1(1 , 1 / 3 ) : 2(0 ,1 / 3 ) : 3( 1 ,1 / 3 )− :

4(1, 1 / 3 )− : 5(0 , 1/ 3)− : 6( 1, 1 / 3)− −

(21)
On the other hand, the standard 2 x 2
Gauss-Legendre numerical integration points are used 

as sampling points of the assumed membrane shear 

strain 12e . Using these three kinds of sampling points, 
we can establish assumed strains as

1 1
1 3 1 3e = H E δ 2 1

2 3 2 3, e = H E δ 3 2
1 2 1 2, e = H E δ

k
(22)

in which 1
1 3E δ , 1

23E δ , 2
12E δ  refer to the strains at 

the sampling points, 1 3(i 1) jδ = − +  denotes the 

position of the sampling point for 11 22e , e , 13 23e , e  

and 2 2 ( i 1) jδ = − +  denotes the position of the 

sampling point for 1 2e  as shown in Figure 4. 
The remaining terms of Eq. (21), the assumed strain 

11 22e , e , have the same interpolation scheme as 

1 3 2 3e , e , respectively.
The incremental assumed natural membrane strains 

with Eq. (22) can be written as

(23)
Eq. (23) can be expressed as following form

( )
AS

eL mΔ = ΔmB u (24)

The incremental assumed natural transverse shear 
strains with Eq. (22) can be written as  

1

31 1
13 3

11 1

1 1e H ,
2 2

L s uXD
e

δ

ξ ξ

⎧ ⎫⎡ ⎤⎧ ⎫⎪ ⎪Δ⎪ ⎪∂∂⎪ ⎪ ⎪⎪⎢ ⎥Δ = ⎨ ⎨ ⎬⎬⎢ ⎥⎪ ⎪ ⎪⎪Δ∂ ∂ ⎪ ⎪⎩ ⎭⎪ ⎪⎣ ⎦⎩ ⎭
1

32 2
23 3

22 2

1 1e H
2 2

L s uXD
e

δ

ξ ξ

⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪Δ⎪ ⎪∂∂⎪ ⎪ ⎪⎪⎢ ⎥Δ = ⎨ ⎨ ⎬⎬⎢ ⎥⎪ ⎪ ⎪⎪Δ∂ ∂ ⎪ ⎪⎩ ⎭⎪ ⎪⎣ ⎦⎩ ⎭
   

        

(25)

Eq. (25) can be expressed as following form

( ) ( ) ( )1 2AS AS AS
eL s Δ⎧ ⎫⎡ ⎤Δ = = Δ⎨ ⎬⎣ ⎦ Δ⎩ ⎭

s s s

u
B B B U

θ (26)

Eq. (24) and Eq. (26) can be expressed in the 
following form:

( )

( ) ( )

A S

3 3
6 1

8 1 A S A S 8 6

0e

e

L m

L b

L s

E ξ ξ
×

×
×

⎡ ⎤⎧ ⎫Δ ⎢ ⎥ Δ⎧ ⎫⎪ ⎪ ⎢ ⎥Δ =⎨ ⎬ ⎨ ⎬Δ⎢ ⎥ ⎩ ⎭⎪ ⎪Δ ⎢ ⎥⎩ ⎭ ⎣ ⎦

m

b 1 b 2

s 1 s 2

B
u

Β B
θ

B B

(27)

Table 1. Interpolation function for assumed natural strain fields

i iH * i 1P ( )ξ * i 2Q ( )ξ

1 ( ) ( )
2 3

i 1 j 2
i=1 j=1

P Qξ ξ∑∑ ( ) ( )1 1 1
1P = 1+ 3
2

ξ ξ ( ) ( )1 2 2 2
1Q = +1
2

ξ ξ ξ

2 ( ) ( )
2 3

i 2 j 1
i=1 j=1

P Qξ ξ∑∑ ( ) ( )2 1 1
1P = 1- 3
2

ξ ξ ( ) 2
2 2 2Q =1-ξ ξ

3 ( ) ( )
2 2

i 1 j 2
i=1 j=1

P Pξ ξ∑∑ - ( ) ( )3 2 2 2
1Q = -1
2

ξ ξ ξ

* P( 2ξ ) and Q( 1ξ ) can be obtained by changing variables.
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5. Constitutive Equation 

In order to obtain a natural co-ordinate based 
constitutive equation, we introduce here an explicit 
transformation scheme between natural co-ordinates and 
the global co-ordinate system.

0J= =TS T D T E C E (28)

where 0J  is the determinant of the Jacobian matrix, 

D  is the constitutive matrix for orthotropic materials 

with the material angle θ  is given by

T
1 1D = T C T (29)

where C  is the constitutive matrix for orthotropic 
materials and 1T  is the transformation matrix between 
local and material axis.

The transformation matrix T  in Eq. (28) is given as

11 11 21 21 31 31 11 21

12 12 22 22 32 32 12 22

13 13 23 23 33 33 13 23

11 12 21 22 31 32 11 22 12 21

12 13 22 23 32 33 12 23

2
2
2

χ χ χ χ χ χ χ χ
χ χ χ χ χ χ χ χ
χ χ χ χ χ χ χ χ
χ χ χ χ χ χ χ χ χ χ
χ χ χ χ χ χ χ χ

=
+

T

13 22

11 13 21 23 31 33 11 23 13 21

χ χ
χ χ χ χ χ χ χ χ χ χ

⎡
⎢
⎢
⎢
⎢
⎢
⎢ +
⎢

+⎢⎣

   

2 1 3 1 1 1 3 1

2 2 3 2 1 2 3 2

2 3 3 3 1 3 3 3

2 1 3 2 2 2 3 1 1 1 3 2 1 2 3 1

2 2
2 2
2 2

χ χ χ χ
χ χ χ χ
χ χ χ χ

χ χ χ χ χ χ χ χ+ +

2 2 3 3 2 3 3 2 1 2 3 3 1 3 3 2

2 1 3 3 2 3 3 1 1 1 3 3 1 3 3 1

χ χ χ χ χ χ χ χ
χ χ χ χ χ χ χ χ

⎤
⎥
⎥
⎥
⎥
⎥
⎥+ +
⎥

+ + ⎥⎦    (30)  
where

j
ij

iX
ξ

χ
∂

=
∂ (31)

The shell element displays resultant membrane forces 
( N ), moments( M) and transverse shear forces(Q) 
acting on a laminate which are obtained by integration 
of stresses through the laminate thickness. In this 
study, we impose the plane state on the natural 
constitutive equation of Eq. (28) before forming the 
equivalent constitutive equation. The compact incremental 
constitutive relations of the composite laminate are as 
follows:

L m

L b

L s

E
E
E

⎧ ⎫Δ Δ⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥Δ = Δ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥Δ Δ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

N [A ] [B ] 0
M [B ] [D ] 0
Q 0 0 [G ] (32)

where

[ ] ( )
1

1
3 3 3 33 3

1 1

,k

k

N Nt k k k

t
k k

d d
−

−
×

= =

= ξ = ξ = ξ −ξ∑ ∑∫ ∫mb mb mbA C C C

[ ] ( ) ( )( )
1

2 21
3 3 3 3 3 33 3

1 1

1 ,
2

k

k

N Nt k k k

t
k k

d d
−

−
×

= =

= ξ ξ = ξ ξ = ξ − ξ∑ ∑∫ ∫mb mb mbB C C C

[ ] ( ) ( )( )
1

3 32 2 1
3 3 3 3 3 33 3

1 1

1 ,
3

k

k

N Nt k k k

t
k k

d d
−

−
×

= =

= ξ ξ = ξ ξ = ξ − ξ∑ ∑∫ ∫mb mb mbD C C C

[ ] ( )
1

1
3 3 3 32 2

1 1

k

k

N Nt k k k
s s st

k k
k d k d k

−

−
×

= =

= ξ = ξ = ξ −ξ∑ ∑∫ ∫s s sG C C C

   (33)

Here k  is the layer number, N  is the total number 

of layers of the shell, ( , 1, 2, 3),ij i j= =mbC C  
( , 4 , 5 )i j i j= =sC C  and sk  is the transverse shear 

correction factor. Reissner’s value of 5/6 is used as the 
transverse shear correction factor in the finite element 
formulation.

6. Incremental Equation of Equilibrium 

The generalized Hook’s law at large strain does not 
represent an approximate material behavior description 
because stress-strain relation is non-linear. From the 
practical point of view, Hook’s law is only applicable 
to small strain, which constitutive tensor is constant 
coefficient. Using small strain assumption, the following 
incremental equilibrium equation is obtained.

( ) ( ) ( )T TL L NL t t L
extE E dV E dV W E dVδ δ δ+ΔΔ Δ + Δ = − Δ∫ ∫ ∫C S S   

(34)

where C  is the constitutive matrix for orthotropic 
materials with the material angle θ , superscript t which 
is generally used as the current configuration is ignored 
in the above Eq. (34) and superscript t t+ Δ  is the 
adjust incremented configuration, t t

extWδ+Δ  is the 
external virtual work in  t t+Δ .

The total tangent stiffness comprises the material 
stiffness and the geometric stiffness. The linear part of 
the Green strain tensor is used to derive the material 
stiffness matrix and non-linear part of the Green strain 
tensor is used to derive the geometric stiffness matrix.
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6.1 Linear Element Stiffness Matrix 

If the strain-displacement Eq. (16) is substituted into 
Eq. (34), the linear element material stiffness matrix 
( [ ]LK ) is obtained.

( ) [ ]( )L T LE E dV dVδ δ δΔ Δ = Δ Δ = Δ Δ∫ ∫T T T
LC u B C B u u K u   

(35)

The element stiffness matrix may be written in a 
matrix form using the equivalent constitutive equations. 
Finally the element stiffness matrix has 6x6 size on the 
reference-surface of shell element. The torsional stiffness 
term was formed as described in Kanok- Nukulchai 
(1988) and added to the stiffness term.

6.2 Geometric Stiffness Matrix

In order to obtain an accurate geometric stiffness 
matrix, the stresses should be evaluated accurately. The 
accuracy of the computation of stresses for formulation 
of geometric stiffness matrix is maintained by obtaining 
the same interpolated strains in the computation of 
linear stiffness matrix. The stresses are computed at the 
integration points based on these strains. Substituting 
the non-linear part of strain into Eq. (35), the 
following geometric stiffness matrix( [ ]GK ) is obtained.

( ) ( ) [ ]TN L N L N LE E dV E dVδ δΔ Δ + Δ = Δ Δ∫ ∫ T
GC S u K u

(36)

The geometric stiffness matrix in the natural coordinate 
is analytically integrated through the thickness. By the 
transformation the natural to the global frame, the 
element geometric stiffness matrix is obtained on the 
global frame with 6x6 sub-matrix. 

Then the final assembled incremental non-linear 
equilibrium equation can be written is 

[ ] [ ]( ) t t+ Δ+ Δ = −L GK K u F F
          (37)

where F  and F  are the external and internal forces 
respectively.

The equilibrium equation must be satisfied throughout 
the complete history of loading and the non-linear 
processing will be stopped only when the out of balance 
forces are negligible within a certain convergence limit. 
If it is necessary to extend the stability analysis beyond 
the limit point, i.e. in the so-called post-buckling range, 
appropriate solution procedures must be applied. One 

approach is to use the arc-length control method in 
conjunction with the Newton- Raphson method to 
extend the stability analysis beyond the limit point, by 
Crisfield (1981).

7. Numerical Examples

Two numerical examples are solved to validate the 
performance of the shell element in geometrically nonlinear 
applications. The anisotropic composite materials are 
used for validation. Since the present study shows 
complex load-deflection curve, it is necessary to use 
the arc-length control method (Crisfield, 1981) in order 
to trace the full path of load-deflection. The automatic 
arc-length procedure (Chaisomphob et al., 1988 and Ma 
et al. 1989) is used for tracing equilibrium paths of 
geometrically nonlinear shells.

The nonlinear analysis of laminated composite shell 
is carried out with a 3.175mm, 6.35mm and a 12.7mm 
thickness. The curved shell is hinged at the straight 
edges and free at the curved edges. The quarter model 
is used for cross ply laminated composite shells. 

The material properties are young’s modulus 
2

1E 3.3 /kN mm= , 2
2 3E E 1.1 /kN mm= = , shear modulus 

2
12 13G G 0.6 /kN mm= = , 2

23G 0.44 /kN mm= , and Poisson’s 

ratio 12 13 23 0.25v v v= = = . Lay up used is 90 / 0 / 90° ° °. 
The geometry of shell is shown in Fig. 5. 

The Figure 6 shows the load-displacements curves 
for 12.7mm thickness. It is shown that the structure 
exhibits a limit point. Beyond the limit point, the 
response of the curved shell will be unstable with 
possibility of a snap-through behavior. The Figure 7 
shows the load-displacements curves for 6.35mm 
thickness. The results shown in Figures 6 and 7, 
obtained with the present formulation are in complete 
agreement with those reported in the reference. 

Fig . 5  Geom etry  of hinged shell
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Next, we investigate the behavior of the hinged 
cylindrical shell for the thickness  3.175mm. The 
thickness is considered in the analysis that leads to a 
thin curved shell with ratio / 8 0 0R h = . Numerical 
results concerning the central deflection at the point 
load are shown in Figure 8. We see that the very 
thinner curved shell shows complex equilibrium paths 
with snap-through and snap-back behavior. 

Fig. 6 Displacements of hinged cylindrical shell under point 
load (symmetric cross-ply (90/0/90), thickness=12.7mm)

Fig. 7 Displacements of hinged cylindrical shell under point 
load (symmetric cross-ply (90/0/90), thickness=6.35mm)

Fig. 8 Displacements of hinged cylindrical shell under point 
load (symmetric cross-ply (90/0/90), thickness=3.175mm)

8. Conclusions 

In this paper we have developed an Element-Based 
Lagrangian Formulation for the nonlinear analysis of 
shell structures. In order to demonstrate the capability 
of the proposed shell element based on the Element- 
Based Lagrangian Formulation, non-linear problems are 
discussed above. The Element-Based Lagrangian 
Formulation makes implementation simpler and easier 
than the traditional Lagrangian formulations, especially 
when the assumed natural strain method is involved. 
Numerical examples for laminated composite curved 
shells presented herein clearly show the validity of the 
present approach and the accuracy of the developed 
shell element. Especially, a thin laminated composite 
shell may be the benchmark test for the large 
deformation analysis of a laminated composite shell 
element. 
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