Browse > Article
http://dx.doi.org/10.11004/kosacs.2012.3.3.022

EAS Solid Element for Free Vibration Analysis of Laminated Composite and Sandwich Plate Structures  

Park, Dae-Yong (Bridge Engineering Team, Daelim cooperation)
Noh, Myung-Hyun (Energy Infrastructure Research Department, Steel Structure Research Division, Research Institute of Industrial Science & Technology, POSCO Global R&D Center)
Lee, Sang-Youl (Department of Civil Engineering, Andong National University)
Publication Information
Journal of the Korean Society for Advanced Composite Structures / v.3, no.3, 2012 , pp. 22-30 More about this Journal
Abstract
This study deals with an enhanced assumed strain (EAS) three-dimensional element for free vibration analysis of laminated composite and sandwich structures. The three-dimensional finite element (FE) formulation based on the EAS method for composite structures shows excellence from the standpoints of computational efficiency, especially for distorted element shapes. Using the EAS FE formulation developed for this study, the effects of side-to-thickness ratios, aspect ratios and ply orientations on the natural frequency are studied and compared with the available elasticity solutions and other plate theories. The numerical results obtained are in good agreement with those reported by other investigators. The new approach works well for the numerical experiments tested, especially for complex structures such as sandwich plates with laminated composite faces.
Keywords
EAS three-dimensional finite element; free vibration; laminates; composite structures; sandwich plates;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Korelc, J, Šolinc U., and Wriggers P. (2010). "An improved EAS brick element for finite deformation." Comp. Mech., 46, pp.641-659.   DOI
2 Lee, S. Y. and Wooh, S. C. (2004). "Finite element vibration analysis of composite box structures using the high order plate theory." J. Sound Vib., 277, pp.801-814.   DOI   ScienceOn
3 Matsunaga, H. (2000). "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory." Compos. Struct, 48, pp.231-44..   DOI   ScienceOn
4 Nayak. A. K., Moy, S. S. J., and Shenoi, R. A. (2002). "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory." Composites: Part B, 33, pp.505-19.   DOI   ScienceOn
5 Noh, Y. H., Park, D. Y., and Lee, S. Y. (2012). "Free vibration of three-dimensional laminated composite structures with different embedded delamination sizes and locations." J. Korean Soc. Adv. Comp. Struc., 3(1), pp.1-11.
6 Noor, A. K. (1973). "Free vibrations of multilayered composite plates." AIAA J, 11, pp.1038-1039.   DOI   ScienceOn
7 Noor, A. K. and Burton, W. S. (1990). "Three-dimensional solutions for antisymmetrically laminated anisotropic plates." J. Appl Mech, 57, pp.183-8.
8 Pian, T. H. H. and Sumihara, K. (1984). "Rational approach for assumed stress finite elements." Int. J. Numer. Methods Eng., 20, pp.1685-1695.   DOI   ScienceOn
9 Rao, M. K., Scherbatiuk, K., Desai, Y. M., and Shah, A. H. (2004). "Natural vibrations of laminated and sandwich plates." J Eng Mech., 130, pp.1268-1278.   DOI   ScienceOn
10 Reddy, J. N. (1984). "simple higher order theory for laminated composite plates," ASME J. App. Mech., 51, pp.745-752.   DOI
11 Andelfinger, U. and Ramm, E. (1993). "EAS-elements for two-dimensional three-dimensional, plate and shell structures and their equivalence to HR-elements." Int. J. Numer. Methods Eng., 36, pp.1311-1337.   DOI   ScienceOn
12 Braes, D. (1998). "Enhanced assumed strain elements and locking in membrane problems." Comp. Meth. Appl. Mech. Engineering, 165, pp.155-174.   DOI   ScienceOn
13 Kant, T. and Swaminathan, K. (2001). "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory." Comp. Struct., 53, pp.73-85.   DOI   ScienceOn
14 Kant, T. and Swaminathan, K. (2001). "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories." J Sound Vib., 241, pp.319-27.   DOI   ScienceOn
15 Han, S. C., Lee, S. Y., and Rus, G. (2010). "Postbuckling analysis of laminated composite plates subjected to the combination of in-plane shear, compression and lateral loading." Int. J. Solids Struct., 43, pp.5713-5735.
16 Senthilnathan, N. R., Lim, K. H., Lee, K. H., and Chow, S. T. (1987). "Buckling of shear deformables plates," AIAA J., 25(9), pp.1268-1271.   DOI   ScienceOn
17 Simo, J. C., Hughes, T. J. R. (1986). "On the variational formulations of assumed strain methods. Journal of Applied Mechanics," ASME, 53, pp.51-54.   DOI
18 Simo, J.C. and Rifai, M.S. A (1990). "class of mixed assumed strain methods and the method of incompatible modes," Int. J. Numer. Methods Eng., 29, pp.1595-1638.   DOI
19 Srinivas, S., Joga Rao, C. V., and Rao, A. K. (1970). "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates." J. Sound Vib., 12(2), pp.187-199.   DOI   ScienceOn
20 Xiaoping S., (2001). "Vibration and bending of antisymmetrically angle-ply laminated plates with perfectly and weakly bonded layers." Composite Struct., 53, pp.245-255.   DOI   ScienceOn
21 Whitney, J. M. and Pagano, N. J. (1970). "Shear deformation in heterogeneous anisotropic plates." ASME J. App. Mech., 37, pp.1031-1036.   DOI
22 Wu, Z., Chen, W., and Ren, X. (2010). "An accurate higher-order theory and C0 finite element for free vibration analysis of laminated composite and sandwich plates." Composite Struct., 92, pp.1299-1307.   DOI   ScienceOn