• Title/Summary/Keyword: free excitons

Search Result 26, Processing Time 0.027 seconds

Comparative study of photoluminescences for Zn-polar and O-polar faces of single-crystalline ZnO bulks

  • O, Dong-Cheol;Kim, Dong-Jin;Bae, Chang-Hwan;Gu, Gyeong-Wan;Park, Seung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.39-39
    • /
    • 2010
  • The authors have an extensive study of photoluminescences for Zn-polar and O-polar faces of single-crystalline ZnO bulks. In the photoluminescence (PL) spectra at 10 K, Zn-polar and O-polar faces show a common emission feature: neutral donor-bound excitons and their longitudinal-optical (LO) phonon replicas are strong, and free excitons are very weak. However, in the PL spectra at room temperature (RT), Zn-polar and O-polar faces show extremely different emission characteristics: the emission intensity of Zn-polar face is 30 times larger than that of O-polar face, and the band edge of Zn-polar face is 33 meV red-shifted from that of O-polar face. The temperature dependence of photoluminescence indicates that the PL spectra at RT are closely associated with free excitons and their phonon-assisted annihilation processes. As a result, it is found that the RT PL spectra of Zn-polar face is dominated by the first-order LO phonon replica of A free excitons, while that of O-polar face is determined by A free excitons. This is ascribed that Zn-polar face has larger exciton-phonon coupling strength than O-polar face.

  • PDF

Growth and optical properties for $AgGaS_2$ epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$ 박막성장과 광학적특성)

  • Youn, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.56-59
    • /
    • 2004
  • The stochiometric composition of $AgGaS_2$ polycrystal source materials for the $AgGaS_2/GaAs$ epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$ has tetragonal structure of which lattice constant $a_0$ and $c_0$ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. $AgGaS_2/GaAs$ epilayer was deposited on throughly etched GaAs (100) substrate from mixed crystal $AgGaS_2$ by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2/GaAs$ epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2/GaAs$ epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}=8.695{\times}10^{-4}eV/K$, and $\beta$=332 K. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2/GaAs$ epilayer, we have found that crystal field splitting $\Delta$ Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Photoluminescence Study on O-plasma Treated ZnO Thin Films

  • Cho, Jaewon;Choi, Jinsung;Yu, SeGi;Rhee, Seuk Joo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.543-547
    • /
    • 2013
  • A temperature dependent (10K-290K) photoluminescence (PL) study for two differently prepared ZnO thin films (as-grown and O-plasma treated) is presented. Four characteristic peaks were identified for both samples: (i) neutral donor-bound excitons ($D^oX$), (ii) two electron satellites (TES), (iii) phonon replica of $D^oX$ ($D^oX$-1LO), and (iv) donor-acceptor pair transition (DAP). As the sample temperature increased, $D^oX$-1LO and DAP transitions became indistinct. This was accompanied by newly-rising emission of free electron-acceptor transitions (e, $A^o$). The spectral evolution with temperature for as-grown samples also showed the optical emission from free excitons, which became dominant at higher temperatures. Some features related to O-plasma were identified in PL spectra: (i) different positions of TES transitions (28meV lower than $D^oX$ for as-grown samples and 35meV for O-plasma treated samples), (ii) the decrease of spectral intensity in both emissions of $D^oX$ and DAP after O-plasma treatment, and (iii) no noticeable transition from free excitons after the O-plasma treatment.

Free exciton transitions and Varshni′s coeffecients for GaN epitaxial layers grown by horizontal LP - MOCVD

  • Lee, Joo-in;Leem, Jae-Young;Son, J.S.;Viswanath, A. Kasi
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.63-67
    • /
    • 2000
  • We have studied the photoluminescence properties of undoped epitaxial layers of GaN on sapphire substrate grown by horizontal low pressure metal organic chemical vapor deposition method in the temperature range of 9-300 K. At 9 K the spectra are dominated by the well resolved interband free excitons A and B as well as bound excitons. Temperature dependence of free exciton transitions was studied and Varshni's coefficients for the temperature variation of bandgap were determined.

  • PDF

Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal (CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리)

  • 박효열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.185-188
    • /
    • 2000
  • The dissociation of excitons bounds to neutral accepter in CdTe single crystal was investigated by measurement of temperature dependence of the photoluminescence spectra. The binding energies of CdTe single crystal were determined by PL spectrum at 12K. The free exciton (X) binding energy, the exciton binding energy on neutral donor ($D^{\circ}$, X), and the exciton binding energy on neutral acceptor ($A^{\circ}$, X) were 10 meV, 3.49 meV, and 7.17 meV respectively. From the value of activation energy of ($A^{\circ}$, X), we could show that the dissociation of ($A^{\circ}$, X) is attributed to free exciton.

  • PDF

PL Study on the ZnO Thin Film with Temperatures (온도 변화에 따른 ZnO 박막에 대한 PL 연구)

  • Cho, Jaewon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.83-86
    • /
    • 2013
  • The optical properties of ZnO thin film have been studied using photoluminescence(PL) spectroscopy with the change of sample temperatures from 10 K to 290 K. The spectrum at 10 K showed the characteristic emission lines of ZnO which were as follows: free exciton(FX) at 3.369 eV, neutral donor-bound exciton($D^0X$) at 3.360 eV, two electron satellite(TES) at 3.332 eV, $D^0X$-1LO at 3.289 eV, and donor-acceptor pair(DAP) transiton at 3.217 eV. From the spectral evolution with temperatures, two features could be identified as temperature went higher: (1) the bound excitons changed gradually into free excitons, (2) DAP turned into free electron-acceptor transition(e,$A^0$). The PL intensity of free exciton increased with the increase of temperatures, which was accompanied by the decrease of the intensity of bound excitions and bound excition-related transitons such as TES and $D^0X$-1LO. At 80 K DAP transition disappeared, while (e,$A^0$) transition started to appear at 30 K.

Growth and optic characteristics of AgGaS$_2$/GaAs single crystal thin film by hot wall epitaxy (HWE 방법에 의한 AgGaS$_2$/GaAs 단결정 박막 성장과 광학적 특성)

  • 이상열;홍광준;정준우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.281-287
    • /
    • 2002
  • The stochiometric composition of AgGaS$_2$ polycrystal source materials for the AgGaS$_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal AgGaS$_2$ has tetragonal structure of which lattice constant a$\sub$0/ and c$\sub$0/ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. AgGaS$_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal AgGaS$_2$ by the Hot Wall Epitaxy (100) system. The source and substrate temperature were 590$^{\circ}C$ and 440$^{\circ}C$ respectively. The crystallinity of the grown AgGaS$_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for AgGaS$_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}$ : 8.695${\times}$10$\^$-4/ eV/K, and ${\beta}$ = 332 K. From the photocurrent spectra by illumination of polarized light of the AgGaS$_2$/GaAs epilayer, we have found that crystal field splitting ΔCr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pain are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods

  • Kim, Soaram;Park, Hyunggil;Nam, Giwoong;Yoon, Hyunsik;Kim, Jong Su;Kim, Jin Soo;Son, Jeong-Sik;Lee, Sang-Heon;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3335-3339
    • /
    • 2013
  • Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons ($D^{\circ}X$), and the first LO phonon replicas of $D^{\circ}X$, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni's empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.

Pholuminescence properties of ZnO disks grown using vapor phase transport (기상 이동법으로 성장한 ZnO disk의 photoluminescence 특성)

  • Nam, Gi-Ung;Kim, Min-Su;Kim, So-A-Ram;Park, Hyeong-Gil;Yun, Hyeon-Sik;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.238-239
    • /
    • 2012
  • ZnO disk는 Ar 가스의 ON/OFF 사이클을 사용한 기상 이동법으로 성장하였다. 온도 의존성 photoluminescence (PL)은 PL 스펙트럼의 quenching 동작을 관장하는 메커니즘을 연구하기 위해 조사하였다. ZnO disk의 12 K PL 스펙트럼에서 3.364, 3.315, 3.244, 3.212, 3.170, 3.139, 3.100 eV의 피크를 관측되었고, 그것은 각각 excitons bound to neutral donors ($D^{\circ}X$), A-line, first-order longitudinal optical (1LO) phonon replica of A-line (A-1LO), donor-to acceptor pair (DAP), A-2LO, DAP-1LO, A-3LO 이다. $D^{\circ}X$와 A-line 피크는 Varshni 공식에 의해서 피팅을 하였고, 도너 이온화 에너지는 40 meV 이었다. Free excitons, $D^{\circ}X$, A-line의 lifetime은 이론적으로 계산하였고, 온도가 증가함에 따라 lifetime이 증가하였다.

  • PDF

A study on the growth and characteristics of $AgGaS_2$ single crystal thin film by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$단결정 박막성장과 특성에 관한 연구)

  • 홍광준;정준우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.211-220
    • /
    • 1998
  • The stochiometric composition of $AgGaS_2$polycrystal source materials for the single crystal thin films were prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns, it was found that the polycrystal $AgGaS_2$has tetragonal structure of which lattice constant $a_0\;and \;c_0$ were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$single crystal thin film was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5 $mu \textrm{m}$/h. The crystallinity of the grown single crystal thin films was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by${\Alpha};=;8.695{\times}10^{-4};eV/K,and;{\beta};=;332;K$. from the photocurrent spectra by illumination of polarized light of the $AgGaS_2$single crystal thin film, we have found that crystal field splitting $\Delta$Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF