Browse > Article
http://dx.doi.org/10.3807/JOSK.2013.17.6.543

Photoluminescence Study on O-plasma Treated ZnO Thin Films  

Cho, Jaewon (Department of Electrophysics, Kwangwoon University)
Choi, Jinsung (Department of Electrophysics, Kwangwoon University)
Yu, SeGi (Department of Physics, Hankuk University of Foreign Studies)
Rhee, Seuk Joo (Department of Physics, Hankuk University of Foreign Studies)
Publication Information
Journal of the Optical Society of Korea / v.17, no.6, 2013 , pp. 543-547 More about this Journal
Abstract
A temperature dependent (10K-290K) photoluminescence (PL) study for two differently prepared ZnO thin films (as-grown and O-plasma treated) is presented. Four characteristic peaks were identified for both samples: (i) neutral donor-bound excitons ($D^oX$), (ii) two electron satellites (TES), (iii) phonon replica of $D^oX$ ($D^oX$-1LO), and (iv) donor-acceptor pair transition (DAP). As the sample temperature increased, $D^oX$-1LO and DAP transitions became indistinct. This was accompanied by newly-rising emission of free electron-acceptor transitions (e, $A^o$). The spectral evolution with temperature for as-grown samples also showed the optical emission from free excitons, which became dominant at higher temperatures. Some features related to O-plasma were identified in PL spectra: (i) different positions of TES transitions (28meV lower than $D^oX$ for as-grown samples and 35meV for O-plasma treated samples), (ii) the decrease of spectral intensity in both emissions of $D^oX$ and DAP after O-plasma treatment, and (iii) no noticeable transition from free excitons after the O-plasma treatment.
Keywords
ZnO thin film; O-plasma treatment; Photoluminescence spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Ellmer, "Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties," J. Phys. D: Appl. Phys. 33, R17-R32 (2000).   DOI   ScienceOn
2 D. C. Look, B. Clafin, Y. I. Alivor, and S. J. Park, "The future of ZnO light emitters," Phys. Stat. Sol. A 201, 2203-2212 (2004).   DOI   ScienceOn
3 Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, "Synthesis of p-type ZnO films," J. Cryst. Growth 216, 330-334 (2000).   DOI   ScienceOn
4 Y. F. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization," J. Appl. Phys. 84, 3912-3918 (1998).   DOI   ScienceOn
5 W. Y. Liang and A. D. Yoffe, "Transmission spectra of ZnO single crystals," Phys. Rev. Lett. 20, 59-62 (1968).   DOI
6 D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, "Valence-band ordering in ZnO," Phys. Rev. B 60, 2340-2344 (1999).   DOI
7 D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, "Nanoscale silicon wires synthesized using simple physical evaporation," Appl. Phys. Lett. 72, 3458-3460 (1998).   DOI   ScienceOn
8 P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature," Solid State Commun. 103, 459-463 (1997).   DOI   ScienceOn
9 D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, "Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE," J. Cryst. Growth 184/185, 605-609 (1998).   DOI   ScienceOn
10 U. Ozgur, Ya. I. Alicov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys. 98, 041301-1-041301-3 (2005).   DOI   ScienceOn
11 A. Kobayashi, O. F. Sankey, and J. D. Dow, "Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO," Phys. Rev. B 28, 946-956 (1983).   DOI
12 A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, "Excitonic fine structure and recombination dynamics in single-crystalline ZnO," Phys. Rev. B 70, 195207-1-195207-10 (2004).   DOI   ScienceOn
13 H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyor, "Optical investigations on excitons bound to impurities and dislocations in ZnO," Optical Materials 23, 33-37 (2003).   DOI   ScienceOn
14 D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, "Temperature dependent excitation photoluminescence of bulk ZnO," J. Appl. Phys. 93, 3214-3217 (2003).   DOI   ScienceOn
15 J. I. Pankove, Optical Processes in Semiconductors (Dover Publications, Inc.), p. 143.
16 L. Wang and N. C. Giles, "Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy," J. Appl. Phys 94, 973-978 (2003).   DOI   ScienceOn
17 K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Wagg, R. Sauer, "Donor-acceptor pair transitions in ZnO substrate material," Physica B 308-310, 945-948 (2001).   DOI   ScienceOn
18 T. C. Damen, S. P. Porto, and B. Tell, "Raman effect in Zinc oxide," Phys. Rev. 142, 570-574 (1966).   DOI
19 K. Tamura, T. Makito, A. Tsukazaki, M. sumiya, S. Fuke, T. Furumochi, M. Lippmaa, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, "Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched $ScAlMgO_4$ (0001) substrates," Solid State Communications 127, 265-269 (2003).   DOI   ScienceOn
20 B. K. Meyer, H. Alves, D. M. Fofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, and A. V. Rodina, "Bound exciton and donor-acceptor pair recombinations in ZnO," Phys. Stat. Sol. (b) 241, 231-260 (2004).   DOI   ScienceOn