• Title/Summary/Keyword: frame joints

Search Result 276, Processing Time 0.025 seconds

Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis (유한요소해석을 활용한 지진하중에 대한 철근콘크리트 건축물의 부착성능 효과 연구)

  • Kim, Yeeun;Kim, Hyewon;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

An Experimental Study on the Strength of the Frame consisting of Concrete Filled Steel Tubular Column-H Beam under Alternately Repeated Horizontal Loading (반복하중을 받는 콘크리트충전 강관기둥-H형강보 골조의 강도에 관한 실험적 연구 -접합부 보강형식과 콘크리트충전에 따른 효과-)

  • Lee, Seong Do;Kim, Pil Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.641-655
    • /
    • 1998
  • It researched several jointing-methods of frame consisting of a concrete-filled steel tubular column and H-shaped beam. These beam-to-column connections is parameters to following: columns of square shape pipe infilled with or without concrete, joints assembled two types of diaphragm, outside-type and through-type. And it is testing that cyclically lateral loadings used hydraulic ram. In testing. we'll be on purposed to estimate the hysteretic behavior, strength and stiffness, energy absorption capacity, deformation capacity and failure configuration of each specimen. It is concluded that the frame specimens with outside-type are more stable and exhibit more energy absorption capacity compared with the through-type, in column of filled with concrete.

  • PDF

The Structural Behavior of $700kg/cm^2$ High Strength Concrete Frames Considering Extension Distances at Joints (내민길이를 고려한 $700kg/cm^2$ 고강도 콘크리트 골조의 구조적거동)

  • 신성우;안종문;윤영수;이승훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.140-148
    • /
    • 1994
  • RCI 318-8!4 recommends that when the specified cornpresslve strength of concrete In a column is greater than 1.4 times thdt spec~f~ed for a floor svsttm. top surface of the colunm concrete shall extend 2ft(600mm) into the slab from the face of colurnn to avoid unexpected brittle failure. Six test specimens were cast arid tested on 2/3 scale frame specmiens havlng different extension distances and compressive strength of concrete as the major variables. The paper discusses the performance of the frames in terms of ductility and also presents the assessment of the ACI 318-89 provisions.The test results showed that the ductility index were incrrased with increasing of compressive strength of concrete and extension distance. And top surface of the column concrete should extend 2h(h overall depth of beam) into the beam from the face of the column to avoid unexpected brittle failure in frame.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

Dynamic performance of a composite building structure under seismic ground motions

  • Tsai, Meng-Hao;Zhang, Junfei;Song, Yih-Ping;Lu, Jun-Kai
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.179-191
    • /
    • 2018
  • This study is aimed at investigating the dynamic performance of a composite building structure under seismic ground motions. The building structure is an official fire department building located in southern Taiwan. It is composed of a seven-story reinforced concrete (RC) and an eight-story steel reinforced concrete (SRC) frame. Both frames share a common basement and are separated by expansion joints from the first to the seventh floor. Recorded floor accelerations of the building structure under eight earthquakes occurring during the period from 2011 to 2013 were examined in this paper. It is found that both frames had similar floor acceleration amplifications in the longitudinal direction, while the SRC frame revealed larger response than the RC frame in the transverse direction. Almost invariant and similar fundamental periods under the eight earthquakes in both directions were obtained from their transfer functions. Furthermore, numerical time-history simulations were carried out for the building structure under the most intensive earthquake. It is realized that the seismic response of the composite building was dominated by the first translational mode in each horizontal direction. Higher modes did not significantly contribute to the structural response. The conventional Rayleigh damping model could be appropriately applied to the time-history simulations under bi-directional excitations. Approximate floor acceleration envelopes were obtained with a compound RC and SRC structural model by using the average damping ratios determined from the different structural arrays.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

Research on non-welding door frame assembly method that allows on-site assembly (현장조립이 가능한 무용접 도어프레임 조립방식에 대한 연구)

  • Lee, Joo-Won;Lim, Bo-Hyeok;Lee, Gwang-Woo;Lee, Hae-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.155-156
    • /
    • 2023
  • In the case of steel door frames commonly found in general buildings, there are various assembly methods such as rivets, bolts, and welding, but the welding method is generally used. However, this welding joint method has many problems, such as distortion due to heat and damage due to external shock. In particular, when used as a fire door, problems may occur in the event of a fire due to distortion caused by heat from welding and the weak welded joint area. In the case of rivet or welded joints, when moved after assembly, joint loosening due to external shock may occur. Problems may arise where the bonding strength becomes weak. In addition, with the recent increase in high-rise buildings and larger buildings, when assembly is completed and brought to the site, a place is needed to store it, and in addition, there is a problem in that it has to be transported several times in small quantities to the installation site, which is another problem of time and cost loss. This is coming to the fore. In order to fundamentally solve this problem, we have researched and developed a non-welding door frame that can be assembled on site. We have researched and developed three assembly methods: screw-type, insert-type, and protrusion-type. Non-welded door frames are small in size and easy to package, making them advantageous for domestic and overseas exports.

  • PDF

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.