• Title/Summary/Keyword: fractured rock

Search Result 259, Processing Time 0.03 seconds

Measurement of Joint Aperture Using 3-D Laser Profilometer (3차원 레이저 측정기를 이용한 절리 간극의 측정)

  • 이희석;이연규;이희근
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.309-320
    • /
    • 2000
  • Aperture is an important parameter for determining the hydraulic characteristics of fractured media. In this study the topography of artificial rock joint surface was measured using 3D laser profilometer to analyze the aperture distribution. The initial aperture distribution was determined when the contact area became one percent of total joint surface. The initial aperture distribution of granite joint, with the mean value of 0.78 mm and the standard deviation of 0.34 mm was much different from that of the marble joint, with the mean value of 0.57 mm and the standard deviation of 0.26 mm. Apertures of both granite and marble showed normal distributions. Aperture distribution with the contact area of 25% was also analyzed. Mean value was decreased to one third compared to the initial aperture, but the standard deviation was decreased slightly. To determine the spatial correlation of the aperture distribution variogram analysis was carried out on the initial aperture data. Most experimental variograms were fitted well with exponential model. It is expected that the measured aperture characteristics can be used for stochastic analysis of fluid flow through rock joints.

  • PDF

The Experimental and Numerical Studies on the Fracture of Gypsum with Three Discontinuities (삼중 불연속면을 가진 석고의 파괴에 대한 실험 및 수치해석에 관한 연구)

  • 사공명
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.173-180
    • /
    • 2002
  • The specimens with three discontinuities have been tested in uniaxial compression. The geometry of discontinuities is changed by three different parameters: flaw inclination angle, continuity, and spacing. From the tips of the discontinuities wing and secondary cracks are observed. Wing cracks initially propagate curvilinear direction and follow loading direction after some distance from the tip of the discontinuities. Two different types of secondary cracks have been observed from the study: quasi-coplanar secondary cracks and oblique secondary cracks. From the test nine different types of coalescence are observed and they show a correlation with flaw angle and ligament angle. It is attempted to simulate the observed results by using FROCK(Fractured ROCK). FROCK is a code based on the hybridized DDM(Displacement Discontinuities Method) . It is shown that FROCK has quite potential of modeling of rock fracture processes.

  • PDF

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

Theoretical model for the shear strength of rock discontinuities with non-associated flow laws

  • Galindo, Ruben;Andres, Jose L.;Lara, Antonio;Xu, Bin;Cao, Zhigang;Cai, Yuanqiang
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.307-321
    • /
    • 2021
  • In an earlier publication (Serrano et al. 2014), the theoretical basis for evaluating the shear strength in rock joints was presented and used to derive an equation that governs the relationship between tangential and normal stresses on the joint during slippage between the joint faces. In this paper, the theoretical equation is applied to two non-linear failure criteria by using non-associated flow laws, including the modified Hoek and Brown and modified Mohr-Coulomb equations. The theoretical model considers the geometric dilatancy, the instantaneous friction angle, and a parameter that considers joint surface roughness as dependent variables. This model uses a similar equation structure to the empirical law that was proposed by Barton in 1973. However, a good correlation with the empirical values and, therefore, Barton's equation is necessary to incorporate a non-associated flow law that governs breakage processes in rock masses and becomes more significant in highly fractured media, which can be induced in a rock joint. A linear law of dilatancy is used to assess the importance of the non-associated flow to obtain very close values for different roughness states, so the best results are obtained for null material dilatancy, which considers significant changes that correspond to soft rock masses or altered zones of weakness.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.

Quantitative Assessment of Joint Roughness Coefficient from Televiewer and Core scan Images (텔레뷰어 및 코어 스캔 이미지를 이용한 절리면 거칠기 계수의 정량적인 평가)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1205-1210
    • /
    • 2005
  • The behavior of rock mass and solute(e.g. groundwater, radioactivity) flow in fractured rock can be directly influenced by joint roughness. The characteristics of joint roughness is also a main factor for the rock classification(e.g. RMR, Q system) which is usually used in tunnel design. Nevertheless, most of JRC estimation has been carried out only by the examination with the naked eye. This JRC estimation has a lack of objectivity because each investigator judges JRC by his subjective opinion. Therefore, it will be desirable that the assessment of JRC is performed by a numerical analysis which can give a quantitative value corresponding to the characteristics of a roughness curve. Meanwhile, roughness curves for joint surfaces which are observed in drill cores have been obtained only along linear profiles. Although roughness curves are measured in the same joint surface, they can frequently show diverse aspects in a standpoint of roughness characteristics. If roughness curves can be measured along the elliptical circumferences of joint surfaces from core scanning images or Televiewer images, they will certainly be more comprehensive than those measured along linear profiles for roughness characteristics of joint surfaces. This study is focus on dealing with (1) extracting automatically roughness curves from core scan image or Televiewer image, (2) improving the accuracy of quantitative assessment of JRC using fractal dimension concept.

  • PDF

Geological and Geophysical Surveys for Determining Causes of Rack Slides (암반사면 사태의 원인규명을 위한 지질조사 및 전기비저항 탐사)

  • 황학수;이태섭;기원서;박종오;문창규;최정환
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.295-301
    • /
    • 2001
  • Geological and geophysical surveys were performed to examined the cause of the rock-mass slide occurred at the opening site of the Wanglim tunnel of the Seoul-Pusan High Speed Railway. The results of geophygical survey and geometrical analysis for the geological structures indicate that the rock-mass slide was triggered by the heavy rainfall which increases the groundwater level and results in high pore pressure in the N60$^{\circ}$ E-trending major fractured zone of the slope, and that the foliation dipping toward the vertical open face of the slope acted as a main sliding plane during movement.

  • PDF

Comparative Study on Stationary and Trolling Methods of Flowmeter in Fractured Rock Aquifer (암반대수층에서의 공내 유량측정기의 고정식 및 이동식 측정방법에 관한 비교 연구)

  • Jang, Ki-Young;Park, Hak-Yun;Kim, Tae-Hee;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.66-74
    • /
    • 2007
  • Stationary and trolling methods in measuring flow using flowmeter were adopted to investigate the hydraulic connectivity of fractures and to evaluate the applicability of the measurement methods. Stationary method was useful for identifying the inflow and outflow patterns in the measured section, which enabled us to analyze the hydraulic connectivity of fractures between the wells. Trolling method failed to find the inflow and outflow patterns in the well, but was very effective for locating the conductive fractures. Measuring flow in the borehole by both stationary and trolling methods was found to be very efficient for identifying conductive fractures and their hydraulic connectivity in fractured rock aquifer.