• Title/Summary/Keyword: fracture tests

Search Result 1,292, Processing Time 0.026 seconds

Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading

  • Golewski, Grzegorz Ludwik
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper describes laboratory tests carried out to evaluate the influence of class F fly ash (FA) on fracture toughness of plain concretes, specified at the third model fracture. Composites with the additives of: 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on axial torsional machine MTS 809 Axial/Torsional Test System, using the cylindrical specimens with dimensions of 150/300 mm, having an initial circumferential notch made in the half-height of cylinders. The studies examined effect of FA additive on the critical stress intensity factor $K_{IIIc}$. In order to determine the fracture toughness $K_{IIIc}$ a special device was manufactured.The analysis of the results revealed that a 20% FA additive causes increase in $K_{IIIc}$, while a 30% FA additive causes decrease in fracture toughness. Furthermore, it was observed that the results obtained during fracture toughness tests are convergent with the values of the compression strength tests.

A Study on the Evaluation Method of Mechanical Properties by Ball Indentation Method (압입법을 이용한 재료 물성치 평가 기법에 관한 연구)

  • Seok, Chang-Seong;Kim, Jeong-Pyo;Song, Seong-Jin;Kim, Hun-Mo;Kim, Jae-Won;Kim, Su-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1903-1910
    • /
    • 2001
  • The BI(Ball Indentation) method has a potential to assess the mechanical properties and to replace conventional fracture tests. In this study, the BI test system has been developed to evaluate material properties. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed by the system using four classes of thermally aged specimens. The results of the BI tests were in good agreement with fracture characteristics from a standard fracture test method.

A study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ball Indentation Method (압입법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구)

  • Seok, Chang-Sung;Kim, Jeong-Pyo;Ahn, Ha-Neul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.151-159
    • /
    • 2001
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the ageing evaluation technique by the BI method. The four classes of the thermally aged 1Cr-!mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method within 5%. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

A Study on the Evaluation of Material Degradation using Ball Indentation Method (압입법을 이용한 재료 열화의 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung;Ahn, Ha-Neul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.171-176
    • /
    • 2000
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

An Experimental Study on the Fracture Safety of Reinforced Concrete Structures (철근콘크리트 구조물의 파괴 안전성에 관한 실험적 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.127-133
    • /
    • 1994
  • In this thesis, the fracture tests were performed on a series of reinforced concrete to investigate the variation of strength and the fracture safety of reinforced concrete structures. The specimens were of the same rectangular cross-section, of effective height 24cm and width 30cm and their span was 330cm. The three point loading system is used in the fracture tests. In these tests, the yield load, the ultimate load, the flexural strain and the mid-span displacement were detected. According to the results of these tests, the fracture behavior of reinforced concrete structures can be summarized as the follows : There Is no difference between the singly and doubly reinforced rectangular beams before the yield load. But from the yield load up to the ultimate load, the mid-span displacement of the singly reinforced rectangular beams are about two times larger than those of the doubly reinforced rectangular beams, The fracture energy of the doubly reinforced rectangular beams are one and half times compared to that of the singly reinforced rectangular beams. Based on the above investigation, it could be concluded that the doubly reinforced rectangular beam is more efficient to resist the brittle fracture than the singly reinforced rectangular beam.

  • PDF

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites (콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구)

  • Kim, M.S.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF

Study on fracture characteristics of reinforced concrete wedge splitting tests

  • HU, Shaowei;XU, Aiqing;HU, Xin;YIN, Yangyang
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.337-354
    • /
    • 2016
  • To study the influence on fracture properties of reinforced concrete wedge splitting test specimens by the addition of reinforcement, and the restriction of steel bars on crack propagation, 7 groups reinforced concrete specimens of different reinforcement position and 1 group plain concrete specimens with the same size factors were designed and constructed for the tests. Based on the double-K fracture criterion and tests, fracture toughness calculation model which was suitable for reinforced concrete wedge splitting tensile specimens has been obtained. The results show that: the value of initial craking load Pini and unstable fracture load Pun decreases gradually with the distance of reinforcement away from specimens's top. Compared with plain concrete specimens, addition of steel bar can reduce the value of initial fracture toughness KIini, but significantly increase the value of the critical effective crack length ac and unstable fracture toughness KIun. For tensional concrete member, the effect of anti-cracking by reinforcement was mainly acted after cracking, the best function of preventing fracture initiation was when the steel bar was placed in the middle of the crack, and when the reinforcement was across the crack and located away from crack tip, it plays the best role in inhibiting the extension of crack.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Effect of Ni and Mo Addition on Fatique Property in 12Cr Steel (12Cr강의 피로특성에 미치는 Ni+Mo 첨가의 영향)

  • Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.435-441
    • /
    • 2021
  • This research was performed to study the effect of the Ni + Mo addition on the fatigue properties in 12Cr steel. After heat treatment of 12Cr steel and 12Cr-Ni-Mo steel, tensile tests, impact tests, hardness tests, and rotary bending fatigue tests were performed, respectively. The fatigue fracture surface was observed and analyzed using SEM and EDS. The fatigue limit of 12Cr steel was 554 MPa, which was 49 MPa higher than 505 MPa of 12Cr-Ni-Mo steel. Striations, which are the shape of the typical fatigue fracture surface, were observed at the fracture surface near the starting point of fatigue fracture in the 12Cr steel and 12Cr-Ni-Mo steel. However, unlike the case of 12Cr steel, 12Cr-Ni-Mo steel also had a mixed fracture surface with the fatigue and the ductile fracture surface. When brittle non-metallic inclusions exist near the starting point of fatigue failure, the crack propagation was further promoted and the fatigue life was drastically reduced.