Browse > Article
http://dx.doi.org/10.12989/sem.2017.62.1.001

Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading  

Golewski, Grzegorz Ludwik (Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology)
Publication Information
Structural Engineering and Mechanics / v.62, no.1, 2017 , pp. 1-9 More about this Journal
Abstract
This paper describes laboratory tests carried out to evaluate the influence of class F fly ash (FA) on fracture toughness of plain concretes, specified at the third model fracture. Composites with the additives of: 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on axial torsional machine MTS 809 Axial/Torsional Test System, using the cylindrical specimens with dimensions of 150/300 mm, having an initial circumferential notch made in the half-height of cylinders. The studies examined effect of FA additive on the critical stress intensity factor $K_{IIIc}$. In order to determine the fracture toughness $K_{IIIc}$ a special device was manufactured.The analysis of the results revealed that a 20% FA additive causes increase in $K_{IIIc}$, while a 30% FA additive causes decrease in fracture toughness. Furthermore, it was observed that the results obtained during fracture toughness tests are convergent with the values of the compression strength tests.
Keywords
concrete; siliceous fly ash; fracture toughness; third model fracture;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites", Comput. Concrete, 8(3), 327-341.   DOI
2 Jacobsen, J.S., Poulsen, P.N., Olesen, J.F. and Krabbenhoft, K. (2013), "Constitutive mixed mode model for cracks in concrete", Eng. Fract. Mech., 99, 30-47.   DOI
3 Jing, Z., Jin, F., Hashida, T., Yamasaki, N. and Ishida, E.H. (2008), "Influence of addition of coal fly ash and quartz on hydrothermal solidification of blast furnace slag", Cement Concrete Res., 38, 976-982.   DOI
4 Kaminski, M. and Pawlak, W. (2011), "Load capacity and stiffness of angular cross section reinforced concrete beams under torsion", Arch. Civil Mech. Eng., 11(4), 885-903.   DOI
5 Konkol, J. and Pokropski, G. (2007), "The necessary number of profile lines for the analysis of concrete fracture surfaces", Struct. Eng. Mech., 25(5), 565-576.   DOI
6 Kurdowski, W. (2014), Cement and Concrete Chemistry, Springer Netherlands, New York, USA.
7 Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28, 271-283.   DOI
8 Liu, M. and Wang, Y. (2011), "Prediction of the strength development of fly ash concrete", Adv. Mater. Res., 150-151, 1026-1033.
9 Lo, K.W., Zhong, K., Tamilselvan, T., Ong, K.C.G. and Wee, T.H. (2002), "Mixed mode I-III fracture testing of cement mortar", ACI Mater. J., 99(5), 435-440.
10 Lopes, A.V., Lopes, S.M.R. and do Carmo, R.N.F. (2014), "Stiffness of reinforced concrete slabs subjected to torsion", Mater. Struct., 47(1-2), 227-238.   DOI
11 Malhotra, V.M., Zhang, M.H. and Leaman, G.H. (2000), "Longterm performance of steel reinforcing bars in portland cement concrete and concrete incorporating moderate and volumes of ASTM class F fly ash", ACI Mater. J., 97(4), 409-417.
12 Mehta, P.K. and Monteiro, P.J.M. (1987), "Effect of aggregate, cement, and mineral admixture on the microstructure of the transition zone", MRS Proc., 114, 65-75.
13 Meyer, Ch. and Peng, X. (1997), "A comprehensive description for damage of concrete subjected to complex loading", Struct. Eng. Mech., 5(6), 679-689.   DOI
14 Miannay, D.P. (1998), Fracture Mechanics, Springer-Verlag, New York, USA.
15 Aslani, F. and Nejadi, S. (2013), "Self-compacting concrete incorporating steel and polypropylene fibers: compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression", Compos. Part B: Eng., 53, 121-133.   DOI
16 Ahmaruzzaman, M. (2010), "A review on the utilization of fly ash", Prog. Energy Combust. Sci., 36(3), 327-363.   DOI
17 Aslani, F. (2013), "Effects of specimen size and shape on compressive and tensile strengths of self-compacting concrete with or without fibers", Mag. Concrete Res., 65(15), 914-929.   DOI
18 Aslani, F. and Natoori, M. (2013), "Stress-strain relationships for steel fiber reinforced selfcompacting concrete", Struct. Eng. Mech., 46(2), 295-322.   DOI
19 Nadeem, A., Memon, S.A. and Lo, T.Y. (2014), "The performance of fly ash and metakaolin concrete at elevated temperatures", Constr. Build. Mater., 62, 67-76.   DOI
20 Monteiro Azevedo, N. and Lemos, J.V. (2006), "Aggregate shape influence on the fracture behaviour of concrete", Struct. Eng. Mech., 24(4), 411-427.   DOI
21 Nasibulin, A.G. Koltsova, T., Nasibulina, L.I., Anoshkin, I.V., Semencha, A., Tolochko, O.V. and Kauppinen, E.I. (2013), "A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles", Acta Mater., 61, 1862-1871.   DOI
22 Rahal, K.N. (2001), "Analysis and design for torsion in reinforced and prestressed concrete beams", Struct. Eng. Mech., 11(6), 575-590.   DOI
23 Nazar, M.E. and Sinha, S.N. (2006), "Influence of bed joint orientation on interlocking grouted stabilized mud-flyash brick masonry under cyclic compressive loading", Struct. Eng. Mech., 24(5), 585-599.   DOI
24 Poon, C.S., Lam, L. and Wong, Y.L. (2000), "A study on high strength concrete prepared with large volumes of low calcium fly ash", Cement Concrete Res., 30, 447-455.   DOI
25 Qin, Q. (2005), "Mode III fracture analysis of piezoelectric materials by Trefftz BEM", Struct. Eng. Mech., 20(2), 225-239.   DOI
26 Rathish Kumar, P., Sumanth Reddy, C. and Saleem Baig, Md. (2014), "Compressive strength performance of high strength concretes using binary supplementary cementitious materials", Cement Wapno Beton (Cement Lime Concrete), 1, 8-16.
27 Reardon, A.C. and Quesnel, D.J. (1995), "Fracture surface interference effects in mode III", Mech. Mater., 19(2-3), 213-226.   DOI
28 Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013), "Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash", Constr. Build. Mater., 44, 157-184.
29 Bazant, Z.P. and Prat, P.C. (1988), "Measurement of mode III fracture energy of concrete", Nucl. Eng. Des., 106(1), 1-8.   DOI
30 Aslani, F. and Samali, B. (2014), "Flexural toughness characteristics of self-compacting concrete incorporating steel and polypropylene fibers", Austr. J. Struct. Eng., 15(3), 269-286.
31 Bazant, Z.P., Prat, P.C. and Tabbara, M.R. (1990), "Antiplane shear fracture tests (Mode III)", ACI Mater. J., 87(1) 12-19.
32 Bharatkumar, B.H., Raghu Prasad, B.K., Ramachandramurthy, D.S., Narayanan, R. and Gopalakrishnan, S. (2005), "Effect of fly ash and slag on the fracture characteristics of high performance concrete", Mater. Struct., 38(1), 63-72.   DOI
33 Cao, J. and Chung, D.D.L. (2004), "Use of fly ash an admixture for electromagnetic interference shielding", Cement Concrete Res., 34, 1889-1892.   DOI
34 Cheng, T.W. and Chen, Y.S. (2004), "Characterization of glass ceramics made from incinerator fly ash", Ceram. Int., 30, 343-349.   DOI
35 Chindaprasirt, P. and Rukzon, S. (2008), "Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar", Constr. Build. Mater., 22, 1601-1606.   DOI
36 Di Prisco, M., Ferrara, L., Meftah, F., Pamin, J., De Borst, R. Mazars, J. and Reynouard, J.M. (2000), "Mixed mode fracture in plain and reinforced concrete: some results on benchmark test", Int. J. Fract., 103, 127-148.   DOI
37 Ehart, R.J.A., Stanzl-Tschegg, S.E. and Tschegg, E.K. (1998), "Crack face interaction and mixed-mode fracture of wood composites during mode III loading", Eng. Fract. Mech., 61(2), 253-278.   DOI
38 Ghosh, A. and Chaundhuri, P. (2013), "Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method", Comput. Mater. Sci., 69, 204-215.   DOI
39 Sahmaran, M., Yaman, Y.O. and Tokyay, M. (2009), "Transport and mechanical properties of self consolidating concrete with high volume fly ash", Cement Concrete Compos., 31, 99-106.   DOI
40 Sadowski, T. and Golewski, G. (2008), "Effect of aggregate kind and graining on modeling of plain concrete under compression", Comput. Mater. Sci., 43, 119-126.   DOI
41 Santosh, M. and Ghosh, M.A. (2015), "Multi-scale identification of concrete material parameters", Theoret. Appl. Fract. Mech., 75, 8-15.   DOI
42 Sekulic, Z., Popov, S., Duricic, M. and Rosic, A. (1999), "Mechanical activation of cement with addition of fly ash", Mater. Lett., 39(2), 115-121.   DOI
43 Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater. Des., 32, 1501-1507.   DOI
44 Wang, J.J.A., Liu, K.C. and Naus, D.A. (2010), "A new test method for determining the fracture toughness of concrete materials", Cement Concrete Res., 40, 497-499.   DOI
45 Song, L., Huang, S.M. and Yang, S.C. (2004), "Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete", Cement Concrete Res., 34, 913-916.   DOI
46 Suresh, S. and Tschegg, E.K. (1987), "Combined mode I-mode III fracture of fatigue-precracked alumina", J. Amer. Ceram Soci., 70(10), 726-733.   DOI
47 Vejmelkova, E., Pavlikova, M., Keepert, M. Kersner, Z., Rovnanikova, P., Ondracek, M., Sedlmajer, M. and Cerny, R. (2009), "Fly ash influence on the properties of high performance concrete", Cement Wapno Beton (Cement Lime Concrete), 4, 189-204.
48 Xia, C., Jianjun, Y. and Huaquan,Y. (2012), "Influence of aggregates on cracking sensitivity of concrete", App. Mech. Mater., 204-208, 3299-3302.   DOI
49 Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594.   DOI
50 Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses", Cement Concrete Compos., 55, 383-394.   DOI
51 Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275.   DOI
52 Zuquan, J., Wei, S., Yunsheng, Z., Jinyang, J. and Jianzhong, L. (2007), "Interaction between sulfate and chloride solution attack of concretes with and without fly ash", Cement Concrete Res., 37, 1223-1232.   DOI
53 Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Sol. Stat. Phenom., 188, 158-163.   DOI
54 Giergiczny, Z. and Krol, A. (2008), "Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites", J. Hazard. Mater., 160, 247-255.   DOI
55 Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546.
56 Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement Lime Concrete, 2, 106-114.
57 Golewski, G.L. and Sadowski, T. (2014), "An analysis of shear fracture toughness $K_{IIc}$ and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214.   DOI
58 Golewski, G.L. and Sadowski, T. (2016), "Macroscopic evaluation of fracture processes in fly ash concrete", Sol. Stat. Phenom., 254, 188-193.   DOI
59 Golewski, G.L., Golewski, P. and Sadowski, T. (2012), "Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly ash additive using XFEM method", Comput. Mater. Sci., 62, 75-78.   DOI