Acknowledgement
Supported by : Ministry of Science and Higher Education
References
- Ahmaruzzaman, M. (2010), "A review on the utilization of fly ash", Prog. Energy Combust. Sci., 36(3), 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
- Aslani, F. (2013), "Effects of specimen size and shape on compressive and tensile strengths of self-compacting concrete with or without fibers", Mag. Concrete Res., 65(15), 914-929. https://doi.org/10.1680/macr.13.00016
- Aslani, F. and Natoori, M. (2013), "Stress-strain relationships for steel fiber reinforced selfcompacting concrete", Struct. Eng. Mech., 46(2), 295-322. https://doi.org/10.12989/sem.2013.46.2.295
- Aslani, F. and Nejadi, S. (2013), "Self-compacting concrete incorporating steel and polypropylene fibers: compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression", Compos. Part B: Eng., 53, 121-133. https://doi.org/10.1016/j.compositesb.2013.04.044
- Aslani, F. and Samali, B. (2014), "Flexural toughness characteristics of self-compacting concrete incorporating steel and polypropylene fibers", Austr. J. Struct. Eng., 15(3), 269-286.
- Bazant, Z.P. and Prat, P.C. (1988), "Measurement of mode III fracture energy of concrete", Nucl. Eng. Des., 106(1), 1-8. https://doi.org/10.1016/0029-5493(88)90265-8
- Bazant, Z.P., Prat, P.C. and Tabbara, M.R. (1990), "Antiplane shear fracture tests (Mode III)", ACI Mater. J., 87(1) 12-19.
- Bharatkumar, B.H., Raghu Prasad, B.K., Ramachandramurthy, D.S., Narayanan, R. and Gopalakrishnan, S. (2005), "Effect of fly ash and slag on the fracture characteristics of high performance concrete", Mater. Struct., 38(1), 63-72. https://doi.org/10.1007/BF02480576
- Cao, J. and Chung, D.D.L. (2004), "Use of fly ash an admixture for electromagnetic interference shielding", Cement Concrete Res., 34, 1889-1892. https://doi.org/10.1016/j.cemconres.2004.02.003
- Cheng, T.W. and Chen, Y.S. (2004), "Characterization of glass ceramics made from incinerator fly ash", Ceram. Int., 30, 343-349. https://doi.org/10.1016/S0272-8842(03)00106-8
- Chindaprasirt, P. and Rukzon, S. (2008), "Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar", Constr. Build. Mater., 22, 1601-1606. https://doi.org/10.1016/j.conbuildmat.2007.06.010
- Di Prisco, M., Ferrara, L., Meftah, F., Pamin, J., De Borst, R. Mazars, J. and Reynouard, J.M. (2000), "Mixed mode fracture in plain and reinforced concrete: some results on benchmark test", Int. J. Fract., 103, 127-148. https://doi.org/10.1023/A:1007613001402
- Ehart, R.J.A., Stanzl-Tschegg, S.E. and Tschegg, E.K. (1998), "Crack face interaction and mixed-mode fracture of wood composites during mode III loading", Eng. Fract. Mech., 61(2), 253-278. https://doi.org/10.1016/S0013-7944(98)00033-2
- Ghosh, A. and Chaundhuri, P. (2013), "Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method", Comput. Mater. Sci., 69, 204-215. https://doi.org/10.1016/j.commatsci.2012.11.025
- Giergiczny, Z. and Krol, A. (2008), "Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites", J. Hazard. Mater., 160, 247-255. https://doi.org/10.1016/j.jhazmat.2008.03.007
- Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546.
- Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement Lime Concrete, 2, 106-114.
- Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Sol. Stat. Phenom., 188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158
-
Golewski, G.L. and Sadowski, T. (2014), "An analysis of shear fracture toughness
$K_{IIc}$ and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044 - Golewski, G.L. and Sadowski, T. (2016), "Macroscopic evaluation of fracture processes in fly ash concrete", Sol. Stat. Phenom., 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188
- Golewski, G.L., Golewski, P. and Sadowski, T. (2012), "Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly ash additive using XFEM method", Comput. Mater. Sci., 62, 75-78. https://doi.org/10.1016/j.commatsci.2012.05.009
- Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites", Comput. Concrete, 8(3), 327-341. https://doi.org/10.12989/cac.2011.8.3.327
- Jacobsen, J.S., Poulsen, P.N., Olesen, J.F. and Krabbenhoft, K. (2013), "Constitutive mixed mode model for cracks in concrete", Eng. Fract. Mech., 99, 30-47. https://doi.org/10.1016/j.engfracmech.2013.01.004
- Jing, Z., Jin, F., Hashida, T., Yamasaki, N. and Ishida, E.H. (2008), "Influence of addition of coal fly ash and quartz on hydrothermal solidification of blast furnace slag", Cement Concrete Res., 38, 976-982. https://doi.org/10.1016/j.cemconres.2008.01.017
- Kaminski, M. and Pawlak, W. (2011), "Load capacity and stiffness of angular cross section reinforced concrete beams under torsion", Arch. Civil Mech. Eng., 11(4), 885-903. https://doi.org/10.1016/S1644-9665(12)60085-5
- Konkol, J. and Pokropski, G. (2007), "The necessary number of profile lines for the analysis of concrete fracture surfaces", Struct. Eng. Mech., 25(5), 565-576. https://doi.org/10.12989/sem.2007.25.5.565
- Kurdowski, W. (2014), Cement and Concrete Chemistry, Springer Netherlands, New York, USA.
- Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28, 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X
- Liu, M. and Wang, Y. (2011), "Prediction of the strength development of fly ash concrete", Adv. Mater. Res., 150-151, 1026-1033.
- Lo, K.W., Zhong, K., Tamilselvan, T., Ong, K.C.G. and Wee, T.H. (2002), "Mixed mode I-III fracture testing of cement mortar", ACI Mater. J., 99(5), 435-440.
- Lopes, A.V., Lopes, S.M.R. and do Carmo, R.N.F. (2014), "Stiffness of reinforced concrete slabs subjected to torsion", Mater. Struct., 47(1-2), 227-238. https://doi.org/10.1617/s11527-013-0057-x
- Malhotra, V.M., Zhang, M.H. and Leaman, G.H. (2000), "Longterm performance of steel reinforcing bars in portland cement concrete and concrete incorporating moderate and volumes of ASTM class F fly ash", ACI Mater. J., 97(4), 409-417.
- Mehta, P.K. and Monteiro, P.J.M. (1987), "Effect of aggregate, cement, and mineral admixture on the microstructure of the transition zone", MRS Proc., 114, 65-75.
- Meyer, Ch. and Peng, X. (1997), "A comprehensive description for damage of concrete subjected to complex loading", Struct. Eng. Mech., 5(6), 679-689. https://doi.org/10.12989/sem.1997.5.6.679
- Miannay, D.P. (1998), Fracture Mechanics, Springer-Verlag, New York, USA.
- Monteiro Azevedo, N. and Lemos, J.V. (2006), "Aggregate shape influence on the fracture behaviour of concrete", Struct. Eng. Mech., 24(4), 411-427. https://doi.org/10.12989/sem.2006.24.4.411
- Nadeem, A., Memon, S.A. and Lo, T.Y. (2014), "The performance of fly ash and metakaolin concrete at elevated temperatures", Constr. Build. Mater., 62, 67-76. https://doi.org/10.1016/j.conbuildmat.2014.02.073
- Nasibulin, A.G. Koltsova, T., Nasibulina, L.I., Anoshkin, I.V., Semencha, A., Tolochko, O.V. and Kauppinen, E.I. (2013), "A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles", Acta Mater., 61, 1862-1871. https://doi.org/10.1016/j.actamat.2012.12.007
- Nazar, M.E. and Sinha, S.N. (2006), "Influence of bed joint orientation on interlocking grouted stabilized mud-flyash brick masonry under cyclic compressive loading", Struct. Eng. Mech., 24(5), 585-599. https://doi.org/10.12989/sem.2006.24.5.585
- Poon, C.S., Lam, L. and Wong, Y.L. (2000), "A study on high strength concrete prepared with large volumes of low calcium fly ash", Cement Concrete Res., 30, 447-455. https://doi.org/10.1016/S0008-8846(99)00271-9
- Qin, Q. (2005), "Mode III fracture analysis of piezoelectric materials by Trefftz BEM", Struct. Eng. Mech., 20(2), 225-239. https://doi.org/10.12989/sem.2005.20.2.225
- Rahal, K.N. (2001), "Analysis and design for torsion in reinforced and prestressed concrete beams", Struct. Eng. Mech., 11(6), 575-590. https://doi.org/10.12989/sem.2001.11.6.575
- Rathish Kumar, P., Sumanth Reddy, C. and Saleem Baig, Md. (2014), "Compressive strength performance of high strength concretes using binary supplementary cementitious materials", Cement Wapno Beton (Cement Lime Concrete), 1, 8-16.
- Reardon, A.C. and Quesnel, D.J. (1995), "Fracture surface interference effects in mode III", Mech. Mater., 19(2-3), 213-226. https://doi.org/10.1016/0167-6636(94)00039-J
- Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013), "Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash", Constr. Build. Mater., 44, 157-184.
- Sadowski, T. and Golewski, G. (2008), "Effect of aggregate kind and graining on modeling of plain concrete under compression", Comput. Mater. Sci., 43, 119-126. https://doi.org/10.1016/j.commatsci.2007.07.037
- Sahmaran, M., Yaman, Y.O. and Tokyay, M. (2009), "Transport and mechanical properties of self consolidating concrete with high volume fly ash", Cement Concrete Compos., 31, 99-106. https://doi.org/10.1016/j.cemconcomp.2008.12.003
- Santosh, M. and Ghosh, M.A. (2015), "Multi-scale identification of concrete material parameters", Theoret. Appl. Fract. Mech., 75, 8-15. https://doi.org/10.1016/j.tafmec.2014.09.005
- Sekulic, Z., Popov, S., Duricic, M. and Rosic, A. (1999), "Mechanical activation of cement with addition of fly ash", Mater. Lett., 39(2), 115-121. https://doi.org/10.1016/S0167-577X(98)00226-2
- Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater. Des., 32, 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043
- Song, L., Huang, S.M. and Yang, S.C. (2004), "Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete", Cement Concrete Res., 34, 913-916. https://doi.org/10.1016/j.cemconres.2003.10.013
- Suresh, S. and Tschegg, E.K. (1987), "Combined mode I-mode III fracture of fatigue-precracked alumina", J. Amer. Ceram Soci., 70(10), 726-733. https://doi.org/10.1111/j.1151-2916.1987.tb04871.x
- Vejmelkova, E., Pavlikova, M., Keepert, M. Kersner, Z., Rovnanikova, P., Ondracek, M., Sedlmajer, M. and Cerny, R. (2009), "Fly ash influence on the properties of high performance concrete", Cement Wapno Beton (Cement Lime Concrete), 4, 189-204.
- Wang, J.J.A., Liu, K.C. and Naus, D.A. (2010), "A new test method for determining the fracture toughness of concrete materials", Cement Concrete Res., 40, 497-499. https://doi.org/10.1016/j.cemconres.2009.09.019
- Xia, C., Jianjun, Y. and Huaquan,Y. (2012), "Influence of aggregates on cracking sensitivity of concrete", App. Mech. Mater., 204-208, 3299-3302. https://doi.org/10.4028/www.scientific.net/AMM.204-208.3299
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses", Cement Concrete Compos., 55, 383-394. https://doi.org/10.1016/j.cemconcomp.2014.09.024
- Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006
- Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261
- Zuquan, J., Wei, S., Yunsheng, Z., Jinyang, J. and Jianzhong, L. (2007), "Interaction between sulfate and chloride solution attack of concretes with and without fly ash", Cement Concrete Res., 37, 1223-1232. https://doi.org/10.1016/j.cemconres.2007.02.016
Cited by
- Influence of nano-SiO 2 on properties of fresh and hardened high performance concrete: A state-of-the-art review vol.148, 2017, https://doi.org/10.1016/j.conbuildmat.2017.05.059
- Effect of curing time on the fracture toughness of fly ash concrete composites vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.090
- Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash vol.10, pp.12, 2017, https://doi.org/10.3390/ma10121393
- Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure vol.134, 2017, https://doi.org/10.1016/j.matchar.2017.11.008
- Effect of Silica Fume and Siliceous Fly Ash Addition on the Fracture Toughness of Plain Concrete in Mode I vol.416, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/416/1/012065
- An Analysis of Fracture Toughness in Concrete with Fly Ash Addition, Considering all Models of Cracking vol.416, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/416/1/012029
- Effect of water to cement ratio on the mode III fracture energy of self-compacting concrete vol.51, pp.4, 2018, https://doi.org/10.1617/s11527-018-1208-x
- Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.203
- Interface Debonding Detection of Precast Segmental Concrete Beams (PSCBs) Using Piezoceramic Transducer-Based Active Sensing Approach vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/8725021
- Transient response of rhombic laminates vol.70, pp.5, 2017, https://doi.org/10.12989/sem.2019.70.5.551
- Physical characteristics of concrete, essential in design of fracture‐resistant, dynamically loaded reinforced concrete structures vol.1, pp.5, 2019, https://doi.org/10.1002/mdp2.82
- Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications vol.11, pp.10, 2017, https://doi.org/10.3390/polym11101667
- Investigation of Voids Characteristics in an Asphalt Mixture Exposed to Salt Erosion Based on CT Images vol.12, pp.22, 2017, https://doi.org/10.3390/ma12223774
- Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials vol.34, pp.5, 2017, https://doi.org/10.12989/scs.2020.34.5.671
- Seismic reliability analysis of structures based on cumulative damage failure mechanism vol.18, pp.4, 2017, https://doi.org/10.12989/eas.2020.18.4.519
- Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition vol.13, pp.9, 2020, https://doi.org/10.3390/en13092184
- Fracture analysis of typical construction materials in natural time vol.547, pp.None, 2017, https://doi.org/10.1016/j.physa.2019.123831
- Shear performance of single-keyed dry joints between reactive power concrete and high strength concrete in push-off tests vol.103, pp.2, 2017, https://doi.org/10.1177/0036850420928643
- Modal analysis of cracked continuous Timoshenko beam made of functionally graded material vol.48, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1639518
- On the effect of ITZ thickness in meso-scale models of concrete vol.258, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2020.119639
- Changes in the Fracture Toughness under Mode II Loading of Low Calcium Fly Ash (LCFA) Concrete Depending on Ages vol.13, pp.22, 2020, https://doi.org/10.3390/ma13225241
- Improvement of Strength Parameters of Cement Matrix with the Addition of Siliceous Fly Ash by Using Nanometric C-S-H Seeds vol.13, pp.24, 2020, https://doi.org/10.3390/en13246734
- The Beneficial Effect of the Addition of Fly Ash on Reduction of the Size of Microcracks in the ITZ of Concrete Composites under Dynamic Loading vol.14, pp.3, 2017, https://doi.org/10.3390/en14030668
- Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete vol.11, pp.5, 2021, https://doi.org/10.3390/cryst11050558
- Rheology of Cement Pastes with Siliceous Fly Ash and the CSH Nano-Admixture vol.14, pp.13, 2017, https://doi.org/10.3390/ma14133640
- Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions vol.14, pp.15, 2017, https://doi.org/10.3390/en14154558