DOI QR코드

DOI QR Code

Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading

  • Golewski, Grzegorz Ludwik (Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology)
  • Received : 2016.04.12
  • Accepted : 2016.10.27
  • Published : 2017.04.10

Abstract

This paper describes laboratory tests carried out to evaluate the influence of class F fly ash (FA) on fracture toughness of plain concretes, specified at the third model fracture. Composites with the additives of: 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on axial torsional machine MTS 809 Axial/Torsional Test System, using the cylindrical specimens with dimensions of 150/300 mm, having an initial circumferential notch made in the half-height of cylinders. The studies examined effect of FA additive on the critical stress intensity factor $K_{IIIc}$. In order to determine the fracture toughness $K_{IIIc}$ a special device was manufactured.The analysis of the results revealed that a 20% FA additive causes increase in $K_{IIIc}$, while a 30% FA additive causes decrease in fracture toughness. Furthermore, it was observed that the results obtained during fracture toughness tests are convergent with the values of the compression strength tests.

Keywords

Acknowledgement

Supported by : Ministry of Science and Higher Education

References

  1. Ahmaruzzaman, M. (2010), "A review on the utilization of fly ash", Prog. Energy Combust. Sci., 36(3), 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
  2. Aslani, F. (2013), "Effects of specimen size and shape on compressive and tensile strengths of self-compacting concrete with or without fibers", Mag. Concrete Res., 65(15), 914-929. https://doi.org/10.1680/macr.13.00016
  3. Aslani, F. and Natoori, M. (2013), "Stress-strain relationships for steel fiber reinforced selfcompacting concrete", Struct. Eng. Mech., 46(2), 295-322. https://doi.org/10.12989/sem.2013.46.2.295
  4. Aslani, F. and Nejadi, S. (2013), "Self-compacting concrete incorporating steel and polypropylene fibers: compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression", Compos. Part B: Eng., 53, 121-133. https://doi.org/10.1016/j.compositesb.2013.04.044
  5. Aslani, F. and Samali, B. (2014), "Flexural toughness characteristics of self-compacting concrete incorporating steel and polypropylene fibers", Austr. J. Struct. Eng., 15(3), 269-286.
  6. Bazant, Z.P. and Prat, P.C. (1988), "Measurement of mode III fracture energy of concrete", Nucl. Eng. Des., 106(1), 1-8. https://doi.org/10.1016/0029-5493(88)90265-8
  7. Bazant, Z.P., Prat, P.C. and Tabbara, M.R. (1990), "Antiplane shear fracture tests (Mode III)", ACI Mater. J., 87(1) 12-19.
  8. Bharatkumar, B.H., Raghu Prasad, B.K., Ramachandramurthy, D.S., Narayanan, R. and Gopalakrishnan, S. (2005), "Effect of fly ash and slag on the fracture characteristics of high performance concrete", Mater. Struct., 38(1), 63-72. https://doi.org/10.1007/BF02480576
  9. Cao, J. and Chung, D.D.L. (2004), "Use of fly ash an admixture for electromagnetic interference shielding", Cement Concrete Res., 34, 1889-1892. https://doi.org/10.1016/j.cemconres.2004.02.003
  10. Cheng, T.W. and Chen, Y.S. (2004), "Characterization of glass ceramics made from incinerator fly ash", Ceram. Int., 30, 343-349. https://doi.org/10.1016/S0272-8842(03)00106-8
  11. Chindaprasirt, P. and Rukzon, S. (2008), "Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar", Constr. Build. Mater., 22, 1601-1606. https://doi.org/10.1016/j.conbuildmat.2007.06.010
  12. Di Prisco, M., Ferrara, L., Meftah, F., Pamin, J., De Borst, R. Mazars, J. and Reynouard, J.M. (2000), "Mixed mode fracture in plain and reinforced concrete: some results on benchmark test", Int. J. Fract., 103, 127-148. https://doi.org/10.1023/A:1007613001402
  13. Ehart, R.J.A., Stanzl-Tschegg, S.E. and Tschegg, E.K. (1998), "Crack face interaction and mixed-mode fracture of wood composites during mode III loading", Eng. Fract. Mech., 61(2), 253-278. https://doi.org/10.1016/S0013-7944(98)00033-2
  14. Ghosh, A. and Chaundhuri, P. (2013), "Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method", Comput. Mater. Sci., 69, 204-215. https://doi.org/10.1016/j.commatsci.2012.11.025
  15. Giergiczny, Z. and Krol, A. (2008), "Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites", J. Hazard. Mater., 160, 247-255. https://doi.org/10.1016/j.jhazmat.2008.03.007
  16. Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546.
  17. Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement Lime Concrete, 2, 106-114.
  18. Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Sol. Stat. Phenom., 188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158
  19. Golewski, G.L. and Sadowski, T. (2014), "An analysis of shear fracture toughness $K_{IIc}$ and microstructure in concretes containing fly-ash", Constr. Build. Mater., 51, 207-214. https://doi.org/10.1016/j.conbuildmat.2013.10.044
  20. Golewski, G.L. and Sadowski, T. (2016), "Macroscopic evaluation of fracture processes in fly ash concrete", Sol. Stat. Phenom., 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188
  21. Golewski, G.L., Golewski, P. and Sadowski, T. (2012), "Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly ash additive using XFEM method", Comput. Mater. Sci., 62, 75-78. https://doi.org/10.1016/j.commatsci.2012.05.009
  22. Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites", Comput. Concrete, 8(3), 327-341. https://doi.org/10.12989/cac.2011.8.3.327
  23. Jacobsen, J.S., Poulsen, P.N., Olesen, J.F. and Krabbenhoft, K. (2013), "Constitutive mixed mode model for cracks in concrete", Eng. Fract. Mech., 99, 30-47. https://doi.org/10.1016/j.engfracmech.2013.01.004
  24. Jing, Z., Jin, F., Hashida, T., Yamasaki, N. and Ishida, E.H. (2008), "Influence of addition of coal fly ash and quartz on hydrothermal solidification of blast furnace slag", Cement Concrete Res., 38, 976-982. https://doi.org/10.1016/j.cemconres.2008.01.017
  25. Kaminski, M. and Pawlak, W. (2011), "Load capacity and stiffness of angular cross section reinforced concrete beams under torsion", Arch. Civil Mech. Eng., 11(4), 885-903. https://doi.org/10.1016/S1644-9665(12)60085-5
  26. Konkol, J. and Pokropski, G. (2007), "The necessary number of profile lines for the analysis of concrete fracture surfaces", Struct. Eng. Mech., 25(5), 565-576. https://doi.org/10.12989/sem.2007.25.5.565
  27. Kurdowski, W. (2014), Cement and Concrete Chemistry, Springer Netherlands, New York, USA.
  28. Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28, 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X
  29. Liu, M. and Wang, Y. (2011), "Prediction of the strength development of fly ash concrete", Adv. Mater. Res., 150-151, 1026-1033.
  30. Lo, K.W., Zhong, K., Tamilselvan, T., Ong, K.C.G. and Wee, T.H. (2002), "Mixed mode I-III fracture testing of cement mortar", ACI Mater. J., 99(5), 435-440.
  31. Lopes, A.V., Lopes, S.M.R. and do Carmo, R.N.F. (2014), "Stiffness of reinforced concrete slabs subjected to torsion", Mater. Struct., 47(1-2), 227-238. https://doi.org/10.1617/s11527-013-0057-x
  32. Malhotra, V.M., Zhang, M.H. and Leaman, G.H. (2000), "Longterm performance of steel reinforcing bars in portland cement concrete and concrete incorporating moderate and volumes of ASTM class F fly ash", ACI Mater. J., 97(4), 409-417.
  33. Mehta, P.K. and Monteiro, P.J.M. (1987), "Effect of aggregate, cement, and mineral admixture on the microstructure of the transition zone", MRS Proc., 114, 65-75.
  34. Meyer, Ch. and Peng, X. (1997), "A comprehensive description for damage of concrete subjected to complex loading", Struct. Eng. Mech., 5(6), 679-689. https://doi.org/10.12989/sem.1997.5.6.679
  35. Miannay, D.P. (1998), Fracture Mechanics, Springer-Verlag, New York, USA.
  36. Monteiro Azevedo, N. and Lemos, J.V. (2006), "Aggregate shape influence on the fracture behaviour of concrete", Struct. Eng. Mech., 24(4), 411-427. https://doi.org/10.12989/sem.2006.24.4.411
  37. Nadeem, A., Memon, S.A. and Lo, T.Y. (2014), "The performance of fly ash and metakaolin concrete at elevated temperatures", Constr. Build. Mater., 62, 67-76. https://doi.org/10.1016/j.conbuildmat.2014.02.073
  38. Nasibulin, A.G. Koltsova, T., Nasibulina, L.I., Anoshkin, I.V., Semencha, A., Tolochko, O.V. and Kauppinen, E.I. (2013), "A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles", Acta Mater., 61, 1862-1871. https://doi.org/10.1016/j.actamat.2012.12.007
  39. Nazar, M.E. and Sinha, S.N. (2006), "Influence of bed joint orientation on interlocking grouted stabilized mud-flyash brick masonry under cyclic compressive loading", Struct. Eng. Mech., 24(5), 585-599. https://doi.org/10.12989/sem.2006.24.5.585
  40. Poon, C.S., Lam, L. and Wong, Y.L. (2000), "A study on high strength concrete prepared with large volumes of low calcium fly ash", Cement Concrete Res., 30, 447-455. https://doi.org/10.1016/S0008-8846(99)00271-9
  41. Qin, Q. (2005), "Mode III fracture analysis of piezoelectric materials by Trefftz BEM", Struct. Eng. Mech., 20(2), 225-239. https://doi.org/10.12989/sem.2005.20.2.225
  42. Rahal, K.N. (2001), "Analysis and design for torsion in reinforced and prestressed concrete beams", Struct. Eng. Mech., 11(6), 575-590. https://doi.org/10.12989/sem.2001.11.6.575
  43. Rathish Kumar, P., Sumanth Reddy, C. and Saleem Baig, Md. (2014), "Compressive strength performance of high strength concretes using binary supplementary cementitious materials", Cement Wapno Beton (Cement Lime Concrete), 1, 8-16.
  44. Reardon, A.C. and Quesnel, D.J. (1995), "Fracture surface interference effects in mode III", Mech. Mater., 19(2-3), 213-226. https://doi.org/10.1016/0167-6636(94)00039-J
  45. Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013), "Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash", Constr. Build. Mater., 44, 157-184.
  46. Sadowski, T. and Golewski, G. (2008), "Effect of aggregate kind and graining on modeling of plain concrete under compression", Comput. Mater. Sci., 43, 119-126. https://doi.org/10.1016/j.commatsci.2007.07.037
  47. Sahmaran, M., Yaman, Y.O. and Tokyay, M. (2009), "Transport and mechanical properties of self consolidating concrete with high volume fly ash", Cement Concrete Compos., 31, 99-106. https://doi.org/10.1016/j.cemconcomp.2008.12.003
  48. Santosh, M. and Ghosh, M.A. (2015), "Multi-scale identification of concrete material parameters", Theoret. Appl. Fract. Mech., 75, 8-15. https://doi.org/10.1016/j.tafmec.2014.09.005
  49. Sekulic, Z., Popov, S., Duricic, M. and Rosic, A. (1999), "Mechanical activation of cement with addition of fly ash", Mater. Lett., 39(2), 115-121. https://doi.org/10.1016/S0167-577X(98)00226-2
  50. Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater. Des., 32, 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043
  51. Song, L., Huang, S.M. and Yang, S.C. (2004), "Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete", Cement Concrete Res., 34, 913-916. https://doi.org/10.1016/j.cemconres.2003.10.013
  52. Suresh, S. and Tschegg, E.K. (1987), "Combined mode I-mode III fracture of fatigue-precracked alumina", J. Amer. Ceram Soci., 70(10), 726-733. https://doi.org/10.1111/j.1151-2916.1987.tb04871.x
  53. Vejmelkova, E., Pavlikova, M., Keepert, M. Kersner, Z., Rovnanikova, P., Ondracek, M., Sedlmajer, M. and Cerny, R. (2009), "Fly ash influence on the properties of high performance concrete", Cement Wapno Beton (Cement Lime Concrete), 4, 189-204.
  54. Wang, J.J.A., Liu, K.C. and Naus, D.A. (2010), "A new test method for determining the fracture toughness of concrete materials", Cement Concrete Res., 40, 497-499. https://doi.org/10.1016/j.cemconres.2009.09.019
  55. Xia, C., Jianjun, Y. and Huaquan,Y. (2012), "Influence of aggregates on cracking sensitivity of concrete", App. Mech. Mater., 204-208, 3299-3302. https://doi.org/10.4028/www.scientific.net/AMM.204-208.3299
  56. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses", Cement Concrete Compos., 55, 383-394. https://doi.org/10.1016/j.cemconcomp.2014.09.024
  57. Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006
  58. Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261
  59. Zuquan, J., Wei, S., Yunsheng, Z., Jinyang, J. and Jianzhong, L. (2007), "Interaction between sulfate and chloride solution attack of concretes with and without fly ash", Cement Concrete Res., 37, 1223-1232. https://doi.org/10.1016/j.cemconres.2007.02.016

Cited by

  1. Influence of nano-SiO 2 on properties of fresh and hardened high performance concrete: A state-of-the-art review vol.148, 2017, https://doi.org/10.1016/j.conbuildmat.2017.05.059
  2. Effect of curing time on the fracture toughness of fly ash concrete composites vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.090
  3. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash vol.10, pp.12, 2017, https://doi.org/10.3390/ma10121393
  4. Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure vol.134, 2017, https://doi.org/10.1016/j.matchar.2017.11.008
  5. Effect of Silica Fume and Siliceous Fly Ash Addition on the Fracture Toughness of Plain Concrete in Mode I vol.416, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/416/1/012065
  6. An Analysis of Fracture Toughness in Concrete with Fly Ash Addition, Considering all Models of Cracking vol.416, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/416/1/012029
  7. Effect of water to cement ratio on the mode III fracture energy of self-compacting concrete vol.51, pp.4, 2018, https://doi.org/10.1617/s11527-018-1208-x
  8. Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.203
  9. Interface Debonding Detection of Precast Segmental Concrete Beams (PSCBs) Using Piezoceramic Transducer-Based Active Sensing Approach vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/8725021
  10. Transient response of rhombic laminates vol.70, pp.5, 2017, https://doi.org/10.12989/sem.2019.70.5.551
  11. Physical characteristics of concrete, essential in design of fracture‐resistant, dynamically loaded reinforced concrete structures vol.1, pp.5, 2019, https://doi.org/10.1002/mdp2.82
  12. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications vol.11, pp.10, 2017, https://doi.org/10.3390/polym11101667
  13. Investigation of Voids Characteristics in an Asphalt Mixture Exposed to Salt Erosion Based on CT Images vol.12, pp.22, 2017, https://doi.org/10.3390/ma12223774
  14. Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials vol.34, pp.5, 2017, https://doi.org/10.12989/scs.2020.34.5.671
  15. Seismic reliability analysis of structures based on cumulative damage failure mechanism vol.18, pp.4, 2017, https://doi.org/10.12989/eas.2020.18.4.519
  16. Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition vol.13, pp.9, 2020, https://doi.org/10.3390/en13092184
  17. Fracture analysis of typical construction materials in natural time vol.547, pp.None, 2017, https://doi.org/10.1016/j.physa.2019.123831
  18. Shear performance of single-keyed dry joints between reactive power concrete and high strength concrete in push-off tests vol.103, pp.2, 2017, https://doi.org/10.1177/0036850420928643
  19. Modal analysis of cracked continuous Timoshenko beam made of functionally graded material vol.48, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1639518
  20. On the effect of ITZ thickness in meso-scale models of concrete vol.258, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2020.119639
  21. Changes in the Fracture Toughness under Mode II Loading of Low Calcium Fly Ash (LCFA) Concrete Depending on Ages vol.13, pp.22, 2020, https://doi.org/10.3390/ma13225241
  22. Improvement of Strength Parameters of Cement Matrix with the Addition of Siliceous Fly Ash by Using Nanometric C-S-H Seeds vol.13, pp.24, 2020, https://doi.org/10.3390/en13246734
  23. The Beneficial Effect of the Addition of Fly Ash on Reduction of the Size of Microcracks in the ITZ of Concrete Composites under Dynamic Loading vol.14, pp.3, 2017, https://doi.org/10.3390/en14030668
  24. Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete vol.11, pp.5, 2021, https://doi.org/10.3390/cryst11050558
  25. Rheology of Cement Pastes with Siliceous Fly Ash and the CSH Nano-Admixture vol.14, pp.13, 2017, https://doi.org/10.3390/ma14133640
  26. Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions vol.14, pp.15, 2017, https://doi.org/10.3390/en14154558