Browse > Article
http://dx.doi.org/10.26748/KSOE.2017.08.31.4.288

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models  

Park, Sung-Ju (Department of Naval Architecture and Ocean Engineering, Inha University)
Park, Byoungjae (Korea Research Institute of Ships and Ocean Engineering)
Choung, Joonmo (Department of Naval Architecture and Ocean Engineering, Inha University)
Publication Information
Journal of Ocean Engineering and Technology / v.31, no.4, 2017 , pp. 288-298 More about this Journal
Abstract
A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.
Keywords
Average stress triaxiality; Average normalized lode angle; Non-proportional stress; Damage evolution; Ductile fracture; Loading path;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Choung, J., Nam, W., Lee, D., Song, S.Y., 2014b. Failure Strain Formulation Via Average Stress Triaxiality of an High Strength Steel for Arctic Structures. Ocean Engineering, 91, 218-226.   DOI
2 Choung, J., Park, S.J., Kim, Y., 2015a. Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies. Journal of Ocean Engineering and Technology. 29(6), 445-453   DOI
3 Choung, J., Park, S.J., Kim, Y., 2015b. Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface. Journal of Ocean Engineering and Technology. 29(6), 454-462.   DOI
4 Coffin Jr., L.F., Tavernelli, J.F., 1959. The cyclic straining and fatigue of metals. Transactions of the Metallurgical Society of AIME, 215, 794-807.
5 Cortese, L., Coppola, T., Campanelli, F., Campana, F., Sasso, M., 2014. Prediction of ductile failure in materials for onshore and offshore pipeline applications. International Journal of Damage Mechanics. 23(1), 104-123   DOI
6 Fischer, F.D., Kolednik, O., Shan, G.X., Rammerstorfer, F.G., 1995. A Note On Calibration Of Ductile Failure Damage Indicators. International Journal of Fracture. 73(4), 345-357.   DOI
7 Lemaitre, J. 1985. A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology. 107, 83-89.   DOI
8 Lode, W., 1926. Versuche uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle, Eisen, Kupfer und Nickel, Z. Phys., 36, 913-939.   DOI
9 Mohr, D., Marcadet, S., 2015. Micromechanically-motivated Phenomenological Hosford-Coulomb Model For Predicting Ductile Fracture Initiation At Low Stress Triaxialites. International Journal of Solids and Structures. 67-68, 40-55.   DOI
10 Osgood, C.C., 1982. Fatigue Design, 2nd ed. Pergamon Press, New York.
11 Park, S.J., Lee, K., Choung, J., 2016. Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface. Journal of Ocean Engineering and Technology, 30(6), 474-483.   DOI
12 Papasidero, J., Doquet, V., Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao-Wierzbicki results revisited. International Journal of Solids and Structures. 69-70, 459-474.   DOI
13 Rice J.R., Tracey, D.M., 1969. On the Ductile Enlargement of Voids in Triaxial Stress Fields. Journal of the Mechanics and Physics of Solids, 17, 201-217.   DOI
14 Simulia, 2008. Abaqus User Manual. Silumia.
15 Yu, H., Olsen, J.S., He, J., Zhang, Z., 2016. Effects of loading path on the fracture loci in a 3D space. Engineering Fracture Mechanics, 151, 22-36.   DOI
16 Xue, L., 2007. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures. 44, 5163-5181.   DOI
17 Bai, Y., Wierzbicki, T., 2010. Application of extended mohrcoulomb criterion to ductile fracture. International Journal of Fracture. 161, 1-20.   DOI
18 Bai, Y., Wierzbicki, T., 2008. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096.   DOI
19 ASTM E8, 2004. Standard Test Methods of Tension Testing of Metallic Materials. American Society for Testing and Materials.
20 Bao, Y., Wierzbicki, T., 2004. On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space. International Journal of Mechanical Sciences, 46(1), 81-98.   DOI
21 Bai, Y., 2008. Effect of loading history on necking and fracture., PhD dissertation, Massachusetts Institute of Technology.
22 Basu, S., Benzerga, A.A., 2015. On the path-dependence of the fracture locus in ductile materials: Experiments. International Journal of Solids and Structures, 71, 79-90.   DOI
23 Benzerga, A.A., Surovik, D., Keralavarma, S.M., 2012. On the Path-dependence of the Fracture Locus in Ductile Materials-analysis. International Journal of Plasticity, 37, 157-170.   DOI
24 Bridgman, P. W. 1952, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York.
25 Choung, J., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of Marine Structural Steel, part III: Experimental Study on Failure Strain. Journal of Ocean Engineering and Technology, 25(3), 53-66.   DOI
26 Choung, J., Shim C.S., Song H.C., 2012. Estimation of Failure Strain of EH36 High Strength Marine Structural Steel using Average Stress Triaxiality. Marine Structures, 29(1), 1-21.   DOI
27 Choung, J., Nam, W., 2013. Formulation of Failure Strain According to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26.   DOI
28 Choung, J., Nam, W., Kim, Y., 2014a. Fracture Simulation of Low-temperature High-strength Steel (EH36) using User-subroutine of Commercial Finite Element Code. Journal of Ocean Engineering and Technology, 28(1), 34-46.   DOI