• Title/Summary/Keyword: fractural analysis

Search Result 10, Processing Time 0.031 seconds

The study of fractural behavior of repaired composite (수리된 복합 레진 수복물의 파괴 거동에 관한 연구)

  • Park, Sang-Soon;Nam, Wook;Eom, Ah-Hyang;Kim, Duck-Su;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.461-472
    • /
    • 2010
  • Objectives: This study evaluated microtensile bond strength (${\mu}TBS$) and short-rod fracture toughness to explain fractural behavior of repaired composite restorations according to different surface treatments. Materials and Methods: Thirty composite blocks for ${\mu}TBS$ test and sixty short-rod specimens for fracture toughness test were fabricated and were allocated to 3 groups according to the combination of surface treatment (none-treated, sand blasting, bur roughening). Each group was repaired immediately and 2 weeks later. Twenty-four hours later from repair, ${\mu}TBS$ and fracture toughness test were conducted. Mean values analyzed with two-way ANOVA / Tukey's B test ($\alpha$= 0.05) and correlation analysis was done between ${\mu}TBS$ and fracture toughness. FE-SEM was employed on fractured surface to examine the crack propagation. Results: The fresh composite resin showed higher ${\mu}TBS$ than the aged composite resin (p < 0.001). Mechanically treated groups showed higher bond strength than non-mechanically treated groups except none-treated fresh group in ${\mu}TBS$ (p < 0.05). The fracture toughness value of mechanically treated surface was higher than that of non-mechanically treated surface (p < 0.05). There was no correlation between fracture toughness and microtensile bond strength values. Specimens having high KIC showed toughening mechanism including crack deviation, microcracks and crack bridging in FE-SEM. Conclusions: Surface treatment by mechanical interlock is more important for effective composite repair, and the fracture toughness test could be used as an appropriate tool to examine the fractural behavior of the repaired composite with microtensile bond strength.

An Equivalent Truss Model by Discretizing Continuum Structure (연속체의 이산화에 의한 등가트러스모델 개발)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.45-52
    • /
    • 2009
  • Generally, structures are analyzed as continuum. However, sometimes it is more efficient to analyze structure as a discrete model rather than as a continuum model in case of the structure has complex shape or loading condition. This study, therefore, suggests an improved analysis discrete model, named Equivalent Truss Model (further as "ETM"), which can obtain similar results with analyzing continuums analysis. ETM adopts a lattice truss to compose the members of the model, and analyses the structures. As a consequence, the ETM produced the identical outcome with the continuums analysis in section force of different structures and loading conditions. Similar results have been shown in internal stress analysis as well. Make use of that ETM is discrete, fractural path of beam was analyzed by ETM and the result was reasonable.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Size Effect for Tension Softening Behavior of Ultra-Strength Steel Fiber Reinforcement Concrete (초고강도 강섬유 보강 콘크리트의 인장연화거동에 대한 크기효과)

  • Lee, Si-Young;Hong, Ki-Nam;Kim, Sung-Wook;Park, Jung-Jun;Han, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.861-864
    • /
    • 2008
  • This study was performanced to investigate the fractural and fatigue behavior of ultra-strength steel fiber reinforcement concrete. The tension softening diagram can describe the post-cracking behavior of concrete in tension. In this paper, Three points bending tests with a notch have been carried out to investigate tensile properties of the steel fiber reinforced concrete(SFRC) according to variation of the height. Poly-linear approximation method combined with FEM analysis is applied to the steel fiber reinforced concrete to determine the tension softening diagrams and also to certify the validity of the method. The simulated load-CMOD curves using the determined softening diagrams though the poly-linear approximation method completely agree with the measured ones.

  • PDF

A Study on Modeling and Analysis of Rock Characteristics at Depth (대심도 암반특성의 모델링 및 해석에 대한 고찰)

  • Cho, Nam-Kak;Shin, Sung-Ho;Jeong, Yong-Jin;Song, Han-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.591-604
    • /
    • 2009
  • This paper presents some important issues in modeling rock behaviour around an underground opening at depth which characterized as stress-induced fractural failure of rock. Unlike other conventional modeling approaches, stress-induced rock failure is highly complex process due to its own heterogeneous and discrete natures. Because of this complexity, many researchers has been struggled to mimic such processes as close as possible to reality with various approaches in both analytical, and numerical approaches for past few decades. Such approaches which are based on continuum mechanics, analytical fracture mechanics, and DEM(Discrete Element Method) were explored in this paper, and fundamental shortcomings for each approaches were illustrated here. In addition, DEM approach using $PFC^{2D}$(Particle Flow Code) was also implemented and illuminated in this paper and discuss the improvement and considerations for the future research.

  • PDF

Fracture Analysis of a $SiN_x$ Encapsulation Layer for Flexible OLED using Electrical Methods (전기적 기법을 통한 플렉서블 OLED 봉지막의 파괴특성 연구)

  • Kim, Hyuk Jin;Oh, Seungha;Kim, Sungmin;Kim, Hyeong Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.15-20
    • /
    • 2014
  • The fracture analysis of $SiN_x$ layers, which were deposited by low-temperature plasma enhanced chemical vapor deposition (LT-PECVD) and could be used for an encapsulation layer of a flexible organic light emitting display (OLED), was performed by an electrical method. The specimens of metal-insulator-metal (MIM) structure were prepared using Pt and ITO electrodes. We stressed MIM specimen mechanically by bending outward with a bending radius of 15mm repeatedly and measured leakage current through the top and bottom electrodes. We also observed the cracks, were generated on surface, by using optical microscope. Once the cracks were initiated, the leakage current started to flow. As the amount of cracks increased, the leakage current was also increased. By correlating the electrical leakage current in the MIM specimen with the bending times, the amount of cracks in the encapsulation layer, generated during the bending process, was quantitatively estimated and fracture behavior of the encapsulation layer was also closely investigated.

RBSN Analysis Model of Asphalt Pavement Retrofitted with Civil Fiber (토목섬유로 보강된 아스팔트 포장의 RBSN 해석 모델)

  • Han, Sang-Hoon;Kwak, So-Shin;Kwon, Yong-Kil;Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • This paper presents a simple and efficient two-dimensional rigid-body-spring network model able to accurately estimate the fractural behavior of civil fiber reinforced pavements. The proposed rigid-body-spring network model, denoted as RBSN model, considers civil fiber reinforcing materials using the beam elements and link spring elements. The RBSN method is able to model collapse due to asphalt crushing and civil fiber slip. The RBSN model is used to predict the applied load-midspan deflection response of civil fiber retrofitted asphalt specimen subjected to the three-point bending. Numerical simulations and experimental measurements are compared to based on tests available in the literature. The numerically simulated responses agree significantly with the corresponding experimental results until the maximum load. However, It should be mentioned that, in order to more accurately predict the postpeak flexural behavior of the civil fiber retrofitted asphalt pavement, development of the advanced model to simulate the slip relationship between civil fiber and asphalt is required.

An experimental study on hydrothermal degradation of cubic-containing translucent zirconia

  • Kengtanyakich, Santiphab;Peampring, Chaimongkon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.265-272
    • /
    • 2020
  • PURPOSE. The aims of this study were to investigate mechanical properties and hydrothermal degradation behaviour of the cubic-containing translucent yttrium oxide stabilized tetragonal zirconia polycrystal (Y-TZP). MATERIALS AND METHODS. Four groups of Y-TZP (T, ST, XT, and P), containing different amount of cubic crystal, were examined. Specimens were aged by autoclaving at 122℃ under 2 bar pressure for 8 h. Phase transformation was analyzed using X-ray diffraction (XRD) to measure phase transformation (t→m). Kruskal-Wallis test was used to determine the difference. Surface hardness, biaxial flexural strength, and fracture toughness in values among the experimental groups and verified with Wilcoxon matched pairs test for hardness values and Mann Whitney U for flexural strength and fracture toughness. RESULTS. XRD analysis showed no monoclinic phase in XT and P after aging. Only Group T showed statistically significant decreases in hardness after aging. Hydrothermal aging showed a significant decrease in flexural strength and fracture toughness in group T and ST, while group XT and P showed no effect of aging on fractural strength and fracture toughness with P<.05. CONCLUSION. Hydrothermal aging caused reduction in mechanical properties such as surface hardness, biaxial flexural strength, and fracture toughness of Y-TZP zirconia. However, cubic-containing zirconia (more than 30% by volume of cubic crystal) was assumed to have high resistance to hydrothermal degradation. Clinical significance: Cubic-containing zirconia could withstand the intraoral aging condition. It could be suggested to use as a material for fabrication of esthetic dental restoration.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

A STUDY ON FRACTURAL BEHAVIOR OF DENTIN-RESIN INTERFACE (상아질-복합레진 접착계면의 파괴거동에 대한 연구)

  • Ryu, Gil-Joo;Choi, Gi-Woon;Park, Sang-Jin;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.208-221
    • /
    • 2007
  • The fracture toughness test is believed as a clinically relevant method for assessing the fracture resistance of the dentinal restoratives. The objectives of this study were to measure the fracture toughness $(K_{1C})$ and microtensile bond strength of dentin-resin composite interface and compare their relationship for their use in evaluation of the integrity of the dentin-resin bond. A minimum of six short-rod specimens for fracture toughness test and fifteen specimens for microtensile bond strength test was fabricated for each group of materials used. After all specimens storing for 24 hours in distilled water at $37^{\circ}C$, they were tensile-loaded with an EZ tester universal testing machin. Statistical analysis was performed using ANOVA and Tukey's test at the 95% confidence level, Pearson's coefficient was used to verify the correlation between the mean of fracture toughness and microtensile bond strength. FE-SEM was employed on fractured surface to describe the crack propagation. Fracture toughness value of Clearfil SE Bond (SE) was the highest, followed by Adper Single Bond 2 (SB), OptiBond Solo (OB), ONE-STEP PLUS (0S), ScotchBond Multi-purpose (SM) and there was significant difference between SE and other 4 groups (p < 0.05). There were, however, no significant difference among SB, OB, OS, SM (p > 0.05). Microtensile bond strength of SE was the highest, followed by SB, OB, SM, OS and OS only showed significant lower value (p < 0.05). There was no correlation between fracture toughness and microtensile bond strength values. FE-SEM examination revealed that dentin bonding agent showed different film thickness and different failure pattern according to the film thickness. From the limited results of this study, it was noted that there was statistically no correlation between K1C and ${\mu}TBS$. We can conclude that for obtaining the reliability of bond strength test of dentin bonding agent, we must pay more attention to the test procedure and its profound scrutiny.