DOI QR코드

DOI QR Code

A STUDY ON FRACTURAL BEHAVIOR OF DENTIN-RESIN INTERFACE

상아질-복합레진 접착계면의 파괴거동에 대한 연구

  • Ryu, Gil-Joo (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Gi-Woon (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Jin (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyung-Kyu (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 류길주 (경희대학교 대학원 치의학과 치과 보존학) ;
  • 최기운 (경희대학교 대학원 치의학과 치과 보존학) ;
  • 박상진 (경희대학교 대학원 치의학과 치과 보존학) ;
  • 최경규 (경희대학교 대학원 치의학과 치과 보존학)
  • Published : 2007.05.31

Abstract

The fracture toughness test is believed as a clinically relevant method for assessing the fracture resistance of the dentinal restoratives. The objectives of this study were to measure the fracture toughness $(K_{1C})$ and microtensile bond strength of dentin-resin composite interface and compare their relationship for their use in evaluation of the integrity of the dentin-resin bond. A minimum of six short-rod specimens for fracture toughness test and fifteen specimens for microtensile bond strength test was fabricated for each group of materials used. After all specimens storing for 24 hours in distilled water at $37^{\circ}C$, they were tensile-loaded with an EZ tester universal testing machin. Statistical analysis was performed using ANOVA and Tukey's test at the 95% confidence level, Pearson's coefficient was used to verify the correlation between the mean of fracture toughness and microtensile bond strength. FE-SEM was employed on fractured surface to describe the crack propagation. Fracture toughness value of Clearfil SE Bond (SE) was the highest, followed by Adper Single Bond 2 (SB), OptiBond Solo (OB), ONE-STEP PLUS (0S), ScotchBond Multi-purpose (SM) and there was significant difference between SE and other 4 groups (p < 0.05). There were, however, no significant difference among SB, OB, OS, SM (p > 0.05). Microtensile bond strength of SE was the highest, followed by SB, OB, SM, OS and OS only showed significant lower value (p < 0.05). There was no correlation between fracture toughness and microtensile bond strength values. FE-SEM examination revealed that dentin bonding agent showed different film thickness and different failure pattern according to the film thickness. From the limited results of this study, it was noted that there was statistically no correlation between K1C and ${\mu}TBS$. We can conclude that for obtaining the reliability of bond strength test of dentin bonding agent, we must pay more attention to the test procedure and its profound scrutiny.

파괴 인성 실험은 상아질-복합레진 계면의 파절 저항성을 평가할 수 있는 임상적으로 신뢰 할 만한 방법이다. 본 연구의 목적은 상아질-레진 계면의 파괴인성과 미세인장결합강도를 측정하여 이 두 실험방법이 상아질-레진 결합을 평가하는 데 가지는 유용성을 비교, 평가하는 것이다 파괴 인성 측정에는 short-rod 시편 형태를 이용하였다. 각 시편에서는 소의 하악절치에서 절단한 치아 절편을 포함시켜 결합면을 얻었다. 미세인장 결합강도 또한 소의 하악절치 순면을 연마하여 상아질을 노출시킨 후 상아질 접착제를 도포하고 레진 블록을 축조하여 측정하였다. 각 시편들은 $37^{\circ}C$ 증류수에 24시간 보관한 후 각 실험방법에 맞게 인장력을 가하여 측정치를 구하였다. 통계분석은 95% 신뢰수준의 ANOVA와 Tukey's test를 이용하였으며, 두 실험방법의 상관관계를 보기 위해 Pearson's 상관계수를 계산하였다. 전자현미경 검사를 통해 미세구조 또한 관찰하여 다음과 같은 결론을 얻었다. 1. 파괴인성은 SE군이 가장 높은 값을 나타냈으며, Adper Single Bond 2 (SB), OptiBond Solo (OB) ONE-STEP PLUS (OS), ScotchBond Multi-purpose (SM)군 순으로 나타났고, Clearfil SE Bond (SE)군은 다른 실험군에 비해 유의하게 높은 값을 나타내었으나 (p <0.05), 다른 실험군 사이에는 유의차가 없었다 (p > 0.05). 2. 미세인장결합강도는 SE군이 가장 높은 값을 나타냈으며, SB, OB, SM, 그리고 OS 순으로 나타났다. SB, OB, SM, SE군 사이에는 통계학적인 유의차가 없었으나 (p > 0.05), OS군의 미세인장결합강도는 다른 4개의 실험군에 비해 낮은 값을 나타내었다 (p < 0.05). 3. FE-SEM관찰에서 피막도가 두껍게 나타난 SM군, SE군과 피막도가 얇은 OS군, OB군, SB군 간에 파괴양상이 다르게 나타났다 즉 전자는 접착층 내 파괴가 일어난 반면, 후자는 resin tag나 레진 침투층 내에서 파절되는 양상을 나타내었다. 4. 파괴 인성과 미세인장결합강도 사이에는 통계학적으로 유의 한 상관 관계가 없었다 ($r^2=0.223$, t=0.927). 이와 같은 결과를 토대로, 상아질 접착제의 임상적 효율성을 평가하고자 할 때는 결합강도 뿐만 아니라. 파괴인성도 함께 고려하여 임상적용의 예견성을 높여야 한다고 결론내릴 수 있다.

Keywords

References

  1. Nakabayashi N. Resin reinforced dentin due to infiltration of monomers into the dentin at the adhesive interface. J Dent Mater 1:78-81. 1982
  2. Van Meerbeek B. lnokoshi S. Braem M. Lambrechts P, Vanherle G. Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems. J Dent Res 7:1530-1540, 1992
  3. Eick JD, Robinson SJ, Chappell RP, Cobb CM, Spencer P. The dentinal surface ; its influence on dentinal adhesion. Part III. Quint Int 24:571-582, 1993
  4. Van Meerbeek B, Dhem A, Goret-Nicaise M, Braem M, Lambrechts P, Vanherle G. Comparative SEM and TEM examination of the ultrastructure of the resindentin interdiffusion zone. J Dent Res 72:495-501. 1993 https://doi.org/10.1177/00220345930720020501
  5. Tay FR. Gwinnett AJ, Pang KM, Wei SHY. Structural evidence of a sealed tissue interface with a total-etch wet-bonding technique in vivo. J Dent Res 73:629-636, 1994 https://doi.org/10.1177/00220345940730030801
  6. Van Meerbeek B, Mohrbacher H. Celis JP, Roos JR. Braem M, Lambrechts p, Vanherle G : Chemical characterization of the resin-dentin interface by microRaman spectroscopy. J Dent Res 72:1423-1428, 1993 https://doi.org/10.1177/00220345930720101201
  7. Eick JD, Miller RG, Robinson SJ, Bowles CQ, Gutshall PL. Chappelow CC. Quantitative analysis of the dentin adhesive interface by Auger spectroscopy. J Dent Res 75: 1027-1033. 1996 https://doi.org/10.1177/00220345960750040501
  8. Kruger MB. Raman mapping of the dentin/adhesive interface. Appl Spectrosc 50:1500-1504, 1996 https://doi.org/10.1366/0003702963904584
  9. Burke FJT and McCaughey AD. The four generations of dentin bonding. Am J Dent 8:88-92, 1995
  10. Pashley DH, Sano H, Ciucchi B, Yoshiyama M, Carvalho RM. Adhesion testing of dentin bonding agents: a reviews. Dent Mater 11: 117-125, 1995 https://doi.org/10.1016/0109-5641(95)80046-8
  11. Swift EJ, Perdigao J, Heymann HO. Bonding to enamel and dentin : a brief history and state of the art. Quint Int 26:95-110, 1995
  12. Heymann HO, Sturdevant JR, Bayne S, Wilder AD, Sluder TB, Brunson WD. Examining tooth flexure effects on cervical restorations : A two-year clinical study. J Am Dent Asso 122:41-47, 1991 https://doi.org/10.1016/S0002-8177(91)25015-1
  13. Duke ES, Robbins JW, Schwartz RS, Summitt JB, Conn LJ. Clinical and interfacial laboratory evaluation of a bonding agent in cervical abrasions. Am J Dent 7:307-311. 1994
  14. van Dijken JWV. Clinical evaluation of four dentin bonding agents in class V abrasion lesions : a fouryear follow-up. Dent mater 10:319-324, 1994 https://doi.org/10.1016/0109-5641(94)90040-X
  15. Van Meerbeek B, Peumans M. Verschueren M, Gladys S, Braem M, Lambrechts P, Vanherle G. Clinical status of ten dentin adhesive systems. J Dent Res 73:1690-1702, 1994 https://doi.org/10.1177/00220345940730110401
  16. Yamaguchi R, Powers JM, Dennison JB. Parameters affecting in vitro bond strength of composites to enamel and dentin. Dent Mater 5:153-156, 1989 https://doi.org/10.1016/0109-5641(89)90003-1
  17. Charpell RP, Eick JD, Theisen FC, Carracho AJL. Shear bond strength and scanning electron microscopic observation of current dentinal adhesives. Quint lnt 22:831-839, 1991
  18. Sorenson JA and Dixit NV. In vitro shear bond strength of dentin adhesives. Int J Prosthodont 4: 117-125, 1991
  19. Soderholm KJM. Correlation of in vivo and in vitro performance of adhesive restorative materials : a report of the ASC MD156 Task Group on Test Methods for the Adhesion of Restorative Materials. Dent Mater 7:74-83. 1991 https://doi.org/10.1016/0109-5641(91)90049-5
  20. Retief DH. Standardizing laboratory adhesion tests. Am J Dent 4:231-236, 1991
  21. Tyas MJ. Guest editorial : reliability and validity in dental materials testing. J Dent Res 70:1471. 1991
  22. Jendresen MD, Allen EP, Bayne SC, Hansson TL, Klooster J, Preston JD. Report of the committee on scientific investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 68: 137-190, 1992 https://doi.org/10.1016/0022-3913(92)90302-Q
  23. van Noort R. Noroozi S, Howard IC, Cardew G. A critique of bond strength measurements. J Dent 17: 6117, 1989
  24. van Noort R. Cardew GE, Howard IC, Noroozi S. The effect of local interfacial geometry on the measurement of the tensile bone strength to dentin. J Dent 70: 889-93, 1991 https://doi.org/10.1177/00220345910700050501
  25. Wang CT and Pilliar RM. Bond cement bonding interfacial fracture toughness determination. Clin Mater 4: 135-153, 1989 https://doi.org/10.1016/0267-6605(89)90004-8
  26. Charalambides PG, Cao HC, Lund J, Evans AG. Development of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces. Mech Mater 8:269-283, 1990 https://doi.org/10.1016/0167-6636(90)90047-J
  27. Tam LE and Pilliar RM. Fracture toughness of dentin/resin-composite adhesive interfaces. J Dent Res 72:953-959, 1993 https://doi.org/10.1177/00220345930720051801
  28. Lin CP and Douglas WH. Failure mechanisms at the human dentin-resin interface : A fracture mechanics approach. J Biomechanics 27:1037-1047, 1994 https://doi.org/10.1016/0021-9290(94)90220-8
  29. Hertzberg RW. Deformation and fracture mechanics of engineering materials. 2nd ed., J. Wiley, New York, 1983
  30. Kelly JR. Perspectives on strength. Dent Mater 11(2): 103-110, 1995 https://doi.org/10.1016/0109-5641(95)80043-3
  31. Beaumont PWR and Young RJ. Slow crack growth in acrylic bone cement. J Biomed Mater Res 9:423-439, 1975 https://doi.org/10.1002/jbm.820090506
  32. Mecholsky JJ. Fracture mechanics principles. Dent Mater 11(2): 111-112, 1995 https://doi.org/10.1016/0109-5641(95)80044-1
  33. Griffith AA. The phenomena of rupture and flow in solids. Phil Trans Series A 221: 163-198, 1920
  34. Ferracane JL. Antonio RC, Matsumoto H. Variables affecting the fracture toughness of dental composites. J Dent Res 66(6):1140-1145, 1987 https://doi.org/10.1177/00220345870660060901
  35. Lloyd CH and Mitchell L. The fracture toughness of tooth coloured restorative materials. J Oral Rehabil 11:257-272, 1984 https://doi.org/10.1111/j.1365-2842.1984.tb00575.x
  36. Ferracane JL and Berge HX. Fracture toughness of experimental dental composites aged in ethanol. J Dent Res 74(7):1418-1423, 1995 https://doi.org/10.1177/00220345950740071501
  37. Young RJ and Beaumont PWR. Failure of brittle polymers by slow crack growth. Part 2. Failure processes in a silica particle-filled epoxy resin composite. J Mater Sci 10: 1343-1350, 1975 https://doi.org/10.1007/BF00540824
  38. Kim KH, Park JH, Imai Y, Kishi T. Microfracture mechanisms of dental resin composites containing spherically-shaped filler particles. J Dent Res 73(2) :499-504. 1994 https://doi.org/10.1177/00220345940730020301
  39. Lloyd CH and Adamson M. The development of fracture toughness and fracture strength in posterior restorative materials. Dent Mater 3:225-231. 1987 https://doi.org/10.1016/S0109-5641(87)80077-5
  40. Goldman M. Fracture properties of composite and glass ionomer dental restorative materials. J Biomed Mater Res 19:771-783, 1985 https://doi.org/10.1002/jbm.820190705
  41. DeGroot R, Van Elst HC, Peters MC. Fracturemechanics parameters of the composite-enamel bond. J Dent Res 69:31-35, 1990 https://doi.org/10.1177/00220345900690010401
  42. Barker LM. A simplified method for measuring plane strain fracture toughness. Eng Fract Mech 9:361-369, 1977 https://doi.org/10.1016/0013-7944(77)90028-5
  43. Bubsey RT, Munz D, Pierce WS, Shannon JL. Compliance calibration of the short rod chevron-notch specimen for fracture toughness testing of brittle material. Int J Frac 125-133, 1982
  44. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Adhesion to Enamel and Dentin: Current Status and Future Challenges. Oper Dent 28(3) :215-235, 2003
  45. Chung SM, Yap AU, Tsai KT, Yap FL. Elastic modulus of resin-based dental restorative materials : a micro indentation approach. J Biomed Mater Res B Appl Biomater 72(2) :246-253, 2005
  46. Fujishima A and Ferracane JL. Comparison of four modes of fracture toughness testing for dental composites. Dent Mater 12:38-43, 1996 https://doi.org/10.1016/S0109-5641(96)80062-5
  47. Van Meerbeek B, De Munck J, Yoshida Y, Shirai K, Inoue S, Shiatani H. Lambrechts P. Chemical bonding potential of adhesive materials to hydroxyapatite. J Dent Res 82(Special Issue), 2003
  48. Tam LE, Khoshand S, Pilliar RM. Fracture resistance of dentin-composite interfaces using different adhesive resin layers. J Dent 29(3) :217-225, 2001 https://doi.org/10.1016/S0300-5712(01)00004-5
  49. Ai H and Nagai M. Effect of the adhesive layer thickness on the fracture toughness of dental adhesive resin. Dent Mater J 19(2): 153-163, 2000 https://doi.org/10.4012/dmj.19.153
  50. Rueggeberg FA and Margeson DH. The effect of oxygen inhibition on the unfilled/filled composite system. J Dent Res 69: 1652-1658, 1990 https://doi.org/10.1177/00220345900690100501
  51. Finger WJ, Lee K-S, Podszun W. Monomers with low oxygen inhibition as enamel/dentin adhesives. Dent Mater 12: 256-261. 1996 https://doi.org/10.1016/S0109-5641(96)80032-7
  52. Miyazaki M, Ando S, Hinoura K, Onose H. Moore BK. Influence of filler addition to bonding agents on shear bond strength to bovine dentin. Dent Mater 11(4) :234-238, 1995 https://doi.org/10.1016/0109-5641(95)80055-7
  53. Nunes MF, Swift EJ, Perdigao J. Effects of adhesive composition on micro tensile bond strength to human dentin. Am J Dent 14(6) :340-343, 2001
  54. Frankenberger R. Lopes M, Perdigao J, Ambrose WW, Rosa BT. The use of flowable composites as filled adhesives. Dent Mater 18(3): 227-238, 2002 https://doi.org/10.1016/S0109-5641(01)00040-9
  55. Retief DH, Wendt SL, Bradley EL. Effect of adhesive thickness on the shear bond strength of Scotchbond 2/Silux to dentin. Am J Dent 2(6):341-344, 1989
  56. Leloup G, D' hoore W, Bouter D, Degrange M, Vreven J. Meta-analytical Review of Factors Involves in Dentin Adherence. J Dent Res 80(7): 1605-1614, 2001 https://doi.org/10.1177/00220345010800070301
  57. Tantbirojn D, Cheng YS, Versluis A, Hodges JS, Douglas WH. Nominal Shear or Fracture Mechanics in the Assessment of Composite-Dentin Adhesion? J Dent Res 79(1) :41-48, 2000 https://doi.org/10.1177/00220345000790010601

Cited by

  1. The study of fractural behavior of repaired composite vol.35, pp.6, 2010, https://doi.org/10.5395/JKACD.2010.35.6.461