DOI QR코드

DOI QR Code

The study of fractural behavior of repaired composite

수리된 복합 레진 수복물의 파괴 거동에 관한 연구

  • Park, Sang-Soon (Division of Dentistry, Department of Conservative Dentistry, Graduate of Kyung Hee University) ;
  • Nam, Wook (Division of Dentistry, Department of Conservative Dentistry, Graduate of Kyung Hee University) ;
  • Eom, Ah-Hyang (Division of Dentistry, Department of Conservative Dentistry, Graduate of Kyung Hee University) ;
  • Kim, Duck-Su (Division of Dentistry, Department of Conservative Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Gi-Woon (Division of Dentistry, Department of Conservative Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Division of Dentistry, Department of Conservative Dentistry, Graduate of Kyung Hee University)
  • 박상순 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 남욱 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 엄아향 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 김덕수 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최기운 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실)
  • Received : 2010.08.26
  • Accepted : 2010.10.13
  • Published : 2010.11.30

Abstract

Objectives: This study evaluated microtensile bond strength (${\mu}TBS$) and short-rod fracture toughness to explain fractural behavior of repaired composite restorations according to different surface treatments. Materials and Methods: Thirty composite blocks for ${\mu}TBS$ test and sixty short-rod specimens for fracture toughness test were fabricated and were allocated to 3 groups according to the combination of surface treatment (none-treated, sand blasting, bur roughening). Each group was repaired immediately and 2 weeks later. Twenty-four hours later from repair, ${\mu}TBS$ and fracture toughness test were conducted. Mean values analyzed with two-way ANOVA / Tukey's B test ($\alpha$= 0.05) and correlation analysis was done between ${\mu}TBS$ and fracture toughness. FE-SEM was employed on fractured surface to examine the crack propagation. Results: The fresh composite resin showed higher ${\mu}TBS$ than the aged composite resin (p < 0.001). Mechanically treated groups showed higher bond strength than non-mechanically treated groups except none-treated fresh group in ${\mu}TBS$ (p < 0.05). The fracture toughness value of mechanically treated surface was higher than that of non-mechanically treated surface (p < 0.05). There was no correlation between fracture toughness and microtensile bond strength values. Specimens having high KIC showed toughening mechanism including crack deviation, microcracks and crack bridging in FE-SEM. Conclusions: Surface treatment by mechanical interlock is more important for effective composite repair, and the fracture toughness test could be used as an appropriate tool to examine the fractural behavior of the repaired composite with microtensile bond strength.

연구목적: 본 연구는 미세인장결합강도와 파괴인성을 통해 복합 레진 수복물의 수리 시기와 표면 처리 방법에 따른 파괴 거동을 알아보고자 시행되었다. 연구 재료 및 방법: Short rod 시편과 composite resin specimen block을 준비하여 표면 처리 방법에 따라 none-treated, sand blasting, bur roughening 군으로 나누고 이를 다시 즉시군과 2주 지연군으로 나누어 수리했다. 결과: 미세인장결합강도와 파괴인성을 측정한 결과, 두 실험 모두에서 즉시군이 지연군보다 높은 값을 보였다. 기계적 표면 처리군이 none-treated군보다 높은 값을 보였고, sand blasting과 bur roughening 사이에 유의한 차이는 없었다. 파괴인성과 미세인장결합강도는 상관 관계가 없었다. FE-SEM을 보아 수복물의 탈락은 균열 전도와 관계가 있는 것으로 보인다. 결론: 수리된 복합 레진의 파괴 거동 평가에는 파괴인성 실험이 적합하다.

Keywords

References

  1. Papacchini F, Dall’Oca S, Chieffi N, Goracci C, Sadek FT, Suh BI, Tay FR, Ferrari M. Composite-to-composite microtensile bond strength in the repair of a microfilled hybrid resin: effect of surface treatment and oxygen inhibition. J Adhes Dent 2007;9(1):25-31.
  2. Suh BI. Oxygen-inhibited layer in adhesion dentistry. J Esthet Restor Dent 2004;16(5):316-323. https://doi.org/10.1111/j.1708-8240.2004.tb00060.x
  3. Rodrigues SA Jr, Ferracane JL, Della Bona A. Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent Mater 2009;23(4):442-451.
  4. Fawzy AS, El-Askary FS, Amer MA. Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite. J Dent 2008;36(12):969-976. https://doi.org/10.1016/j.jdent.2008.07.014
  5. Cavalcanti AN, De Lima AF, Peris AR, Mitsui FH, Marchi GM. Effect of surface treatments and bonding agents on the bond strength of repaired composites. J Esthet Restor Dent 2007;19(2):90-98(discussion 99). https://doi.org/10.1111/j.1708-8240.2007.00073.x
  6. Teixeira EC BS, Thompson JY, Ritter AV, Swift EJ. Shear bond strength of self-etching bonding systems in combination with various composites used for repairing aged composites. J Adhes Dent 2005;7(2):159-164.
  7. Tezvergil A, Lassila LV, Vallittu PK. Composite-composite repair bond strength: effect of different adhesion primers. J Dent 2003;31(8):521-525. https://doi.org/10.1016/S0300-5712(03)00093-9
  8. Brosh T, Pilo R, Bichacho N, Blutstein R. Effect of combinations of surface treatments and bonding agents on the bond strength of repaired composites. J Prosthet Dent 1997;77(2):122-126. https://doi.org/10.1016/S0022-3913(97)70224-5
  9. Bonstein T, Garlapo D, Donarummo J, Jr., Bush PJ. Evaluation of varied repair protocols applied to aged composite resin. J Adhes Dent 2005;7(1):41-49.
  10. Cesar PF, Meyer Faara PM, Miwa Caldart R, Gastaldoni Jaeger R, da Cunha Ribeiro F.. Tensile bond strength of composite repairs on Artglass using different surface treatments. Am J Dent 2001;14(6):373-377.
  11. Mecholsky JJ Jr. Fracture mechanics principles. Dent Mater 1995;11(2):111-112. https://doi.org/10.1016/0109-5641(95)80044-1
  12. Tam LE, Dev S, Pilliar RM. Fracture toughness ov conventional or photopolymerized glass ionomer/dentin interfaces. Oper Dent 1995;20(4):144-150.
  13. Ryu GJ, Choi GW, Park SJ, Choi. KK. A Study on Fractural Behavior of Dentin-Resin Interface. J Kor Acad Cons Dent 2007;32(3):208-221. https://doi.org/10.5395/JKACD.2007.32.3.208
  14. Dhuru VB, Lloyd. CH. The fracture toughness of repaired composite. J Oral Rehabil 1986;13(5):413-421. https://doi.org/10.1111/j.1365-2842.1986.tb01303.x
  15. Tam LE, Pilliar RM. Fracture toughness of dentin/resin-composite adhesive interfaces. J Dent Res 1993;72(5):953-959. https://doi.org/10.1177/00220345930720051801
  16. Tam LE, Pilliar RM. Effects of dentin surface treatments on the fracture toughness and tensile bond strength of a dentin-composite adhesive interface. J Dent Res 1994;73(9):1530-1538. https://doi.org/10.1177/00220345940730090801
  17. Barker LM. A simplified methods for measuring plane strain fracture toughness. Eng Fract Mech 1977;9:361-369. https://doi.org/10.1016/0013-7944(77)90028-5
  18. Tam LE, Pilliar RM. Fracture surface characterization of dentin-bonded interfacial fracture toughness specimens. J Dent Res 1994;73(3):607-619. https://doi.org/10.1177/00220345940730030601
  19. Lee YS, Choi KK, Park SJ. Effect of resin matrix on degree of conversion and fracture toughness of dental composites. J Kor Acad Cons Dent 2002;27(1):77-86. https://doi.org/10.5395/JKACD.2002.27.1.077
  20. Ruyter IE, Oysaed H. Composites for use in posterior teeth: composition and conversion. J Biomed Mater Res 1987;21(1):11-23. https://doi.org/10.1002/jbm.820210107
  21. Filho JD, Poskus LT, Guimarães JG, Barcellos AA, Silva EM. Degree of conversion and plasticization of dimethacrylate-based polymeric matrices: influence of light-curing mode. J Oral Sci 2008;50(3):315-321. https://doi.org/10.2334/josnusd.50.315
  22. Sturdevant CM, edited by Roberson TM, Heymann H, Swift EJ. Sturdevant’s art and science of operative dentistry. 5th ed., 2006. p201-203.
  23. Goncalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga. RR. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Eur J Oral Sci 2009;117(4):442-446. https://doi.org/10.1111/j.1600-0722.2009.00636.x
  24. Eick JD, Gwinnett AJ, Pashley DH, Robinson SJ. Current concepts on adhesion to dentin. Crit Rev Oral Biol Med 1997;8(3):306-335. https://doi.org/10.1177/10454411970080030501
  25. Lapcik L Jr JJ, Stasko A, Saha P. Electron paramagnetic resonance study of free-radical kinetics in ultraviolet-light cured dimethacrylate copolymers. J Mater Sci Mater Med 1998;9(5):257-262. https://doi.org/10.1023/A:1008800626750
  26. Miyazaki M, Onose H, Iida N, Kazama H. Determination of residual double bonds in resin-dentin interface by Raman spectroscopy. Dent Mater 2003;19(3):245-251. https://doi.org/10.1016/S0109-5641(02)00039-8
  27. Cavalcanti AN, Lobo MM, Fontes CM, Liporoni P, Mathias P. Microleakage at the Composite-repair Interface: Effect of Different Surface Treatment Methods. Oper Dent 2005;30(1):113-117.
  28. Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res 1999;78(8):1469-1476. https://doi.org/10.1177/00220345990780081301
  29. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 2001;12(2):136-151. https://doi.org/10.1177/10454411010120020401
  30. Ye Q, Spencer P, Wang Y, Misra A. Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomed Mater Res A 2007;80(2):342-350.
  31. Passos SP, Ozcan M, Vanderlei AD, Leite FP, Kimpara ET, Bottino MA. Bond strength durability of direct and indirect composite systems following surface conditioning for repair. J Adhes Dent 2007;9(5):443-447.
  32. Choi SY, Jeong SW, Hwang YC, Kim SH, Yun C, Oh WM, Hwang. IN. Shear bond strength of repaired composite resin restorations. J Kor Acad Cons Dent 2002;27(6):569-576. https://doi.org/10.5395/JKACD.2002.27.6.569
  33. Ferracane JL, Marker VA. Solvent degradation and reduced fracture toughness in aged composites. J Dent Res 1992;71(1):13-19. https://doi.org/10.1177/00220345920710010101
  34. Craig RG, Powers JM. Restorative Dental Materials 11th. Mosby St Louis, 2002.
  35. Nalla R K, Kinney J H, Ritchie. RO. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials 2003;24(22):3955-3968. https://doi.org/10.1016/S0142-9612(03)00278-3
  36. Young RJ, Beaumont P. Failure of brittle polymers by slow crack growth. Part 2. Failure processes in a silica particle-filled epoxy resin composite. J Mater Sci 1975;101:343-1350.
  37. Kim KH, Park JH, Imai Y, Kishi. T. Microfracture mechanisms of dental resin composites containing spherically-shaped filler particles. J Dent Res 1994;73(2):499-504. https://doi.org/10.1177/00220345940730020301
  38. KIM SC. Polymer Engeneering I. 1994. p287-310.
  39. Soderholm KJ. Review of the fracture toughness approach. Dent Mater 2010;26(2):e63-77.
  40. Kruzic JJ, Nalla RK, Kinney JH, Ritchie. R. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials 2003;24(28):5209-5221. https://doi.org/10.1016/S0142-9612(03)00458-7