Browse > Article
http://dx.doi.org/10.4047/jap.2020.12.5.265

An experimental study on hydrothermal degradation of cubic-containing translucent zirconia  

Kengtanyakich, Santiphab (Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University)
Peampring, Chaimongkon (Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University)
Publication Information
The Journal of Advanced Prosthodontics / v.12, no.5, 2020 , pp. 265-272 More about this Journal
Abstract
PURPOSE. The aims of this study were to investigate mechanical properties and hydrothermal degradation behaviour of the cubic-containing translucent yttrium oxide stabilized tetragonal zirconia polycrystal (Y-TZP). MATERIALS AND METHODS. Four groups of Y-TZP (T, ST, XT, and P), containing different amount of cubic crystal, were examined. Specimens were aged by autoclaving at 122℃ under 2 bar pressure for 8 h. Phase transformation was analyzed using X-ray diffraction (XRD) to measure phase transformation (t→m). Kruskal-Wallis test was used to determine the difference. Surface hardness, biaxial flexural strength, and fracture toughness in values among the experimental groups and verified with Wilcoxon matched pairs test for hardness values and Mann Whitney U for flexural strength and fracture toughness. RESULTS. XRD analysis showed no monoclinic phase in XT and P after aging. Only Group T showed statistically significant decreases in hardness after aging. Hydrothermal aging showed a significant decrease in flexural strength and fracture toughness in group T and ST, while group XT and P showed no effect of aging on fractural strength and fracture toughness with P<.05. CONCLUSION. Hydrothermal aging caused reduction in mechanical properties such as surface hardness, biaxial flexural strength, and fracture toughness of Y-TZP zirconia. However, cubic-containing zirconia (more than 30% by volume of cubic crystal) was assumed to have high resistance to hydrothermal degradation. Clinical significance: Cubic-containing zirconia could withstand the intraoral aging condition. It could be suggested to use as a material for fabrication of esthetic dental restoration.
Keywords
Zirconia ceramic; Mechanical properties; Hydrothermal degradation; Cubic phase; Fracture toughness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015;28:227-35.   DOI
2 Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307.   DOI
3 Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res 2010;89:91-5.   DOI
4 Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 2010;26:807-20.   DOI
5 Chevalier J. What future for zirconia as a biomaterial?. Biomaterials 2006;27:535-43.   DOI
6 Kim HT, Han JS, Yang JH, Lee JB, Kim SH. The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J Adv Prosthodont 2009;1:113-7.   DOI
7 Alghazzawi TF, Lemons J, Liu PR, Essig ME, Bartolucci AA, Janowski GM. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont 2012;21:363-9.   DOI
8 Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent 2017;117:303-9.   DOI
9 Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent 2012;108:223-30.   DOI
10 Flinn BD, Raigrodski AJ, Singh A, Mancl LA. Effect of hydrothermal degradation on three types of zirconias for dental application. J Prosthet Dent 2014;112:1377-84.   DOI
11 Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:e327-37.
12 Baldissara P, Wandscher VF, Marchionatti AME, Parisi C, Monaco C, Ciocca L. Translucency of IPS e.max and cubic zirconia monolithic crowns. J Prosthet Dent 2018;120:269-75.   DOI
13 Ramesh S, Sara Lee KY, Tan CY. A review on the hydrothermal ageing behaviour of Y-TZP ceramics. Ceram Int 2018;44:20620-34.   DOI
14 ISO 6872. Dentistry - Ceramic materials. International Standards Organization (ISO); Geneva; Switzerland, 2015. Available at: https://www.iso.org/obp/ui#iso:std:iso:6872:ed-4:v1:en
15 Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn Dent Sci Rev 2020;56:1-23.   DOI
16 Volpato CAM, Garbelotto LGA, Fredel MC, Bondioli F. Application of zirconia in dentistry: biological, mechanical and optical considerations. In: Sikalidis C, editor. Advances in ceramics? Electric and magnetic Ceramics, bioceramics, ceramics and environment. In Tech Open 2011. p. 397-420.
17 Carrabba M, Keeling AJ, Aziz A, Vichi A, Fonzar RF, Wood D, Ferrari M. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J Dent 2017;60:70-6.   DOI
18 Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 1984;67:119-21.
19 Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016;32:908-14.   DOI
20 Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. 12th ed. St. Louis; Elsevier; 2013. p. 62, 454.
21 Wang H, Isgro G, Pallav P, Feilzer AJ. Influence of test methods on fracture toughness of a dental porcelain and a soda lime glass. J Am Ceram Soc 2005;88:2868-73.   DOI
22 Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61.   DOI
23 Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5.   DOI
24 Church TD, Jessup JP, Guillory VL, Vandewalle KS. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen Dent 2017;65:48-52.
25 Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-203.   DOI
26 Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Narhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-7.   DOI
27 Casolco SR, Xu J and Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater 2008;58:516-9.   DOI
28 Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000;83:461-87.   DOI
29 Abraham I, Gritzner G. Mechanical properties of doped cubic zirconia ceramics. J Mater Sci Lett 1993;12:995-7.   DOI
30 Garvie RC, Hannink RHJ, Pascoe RT. Ceramic steel?. Nature 1975;258:703-4.   DOI
31 Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999;82:2150-4.   DOI
32 Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chem Mater 2004;16:3988-3994.   DOI
33 Sato T, Shimada M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. J Am Ceram Soc 1985;68:356-9.   DOI
34 Yoshimura M, Noma T, Kawabata K, Somiya C. Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett 1987;6:465-7.   DOI
35 Lange FF, Dunlop GL, Davis BI. Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at $250^{\circ}C$. J Am Ceram Soc 1986;69:237-40.   DOI