• Title/Summary/Keyword: fractional noise

Search Result 98, Processing Time 0.029 seconds

Understanding Robust Design with Paper Helicopter Experiment (종이 헬리콥터 실험을 통한 강건설계의 이해)

  • Byun, Jai-Hyun;Kim, Yong Tae;Lee, Min Ji
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.374-382
    • /
    • 2013
  • Robust design method developed by Genichi Taguchi has been very popular since the 1980s and there have been many academic and applied research works on this topic. However, college students and engineers in companies have had difficulty in understanding the method. This paper presents a procedure to implement the robust design method by an easy-to-execute paper helicopter experiment. A crossed array was adopted, which consists of a resolution IV fractional factorial design with 6 control factors and a factorial design with 3 noise factors. Three performance measures were analyzed; signal-to-noise ratio, mean, and standard deviation of the falling time of the paper helicopter that is to be maximized. Control-noise interaction plots are also given to evaluate the degree of the sensitivity of each level of the control factors to the noise factors. The procedure presented in this paper can be helpful to those who want to have basic knowledge in the robust design method.

Active Noise Transmission Control Through a Panel Structure Using a Frequency Domain Identification Method (주파수 영역 모델 방법을 이용한 평판 구조물의 능동 소음전달 제어)

  • Kim, Yeung-Shik;Kim, In-Soo;Moon, Chan-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.71-81
    • /
    • 2001
  • This paper analyzes the effectiveness of minimizing vibration and sound transmission on/through a thin rectangular plate by both feedback control and hybrid control which combines adaptive feedforward control with a feedback loop. An experimental system identification technique using the matrix-fractional curve-fitting of the frequency response data is introduced for complex shaped structures. This identification technique reduces the model order o the MIMO(Multi-Input Multi-Output) system which simplifies the practical implementation. The adaptive feedforward control uses a Multiple filtered-x LMS(Least Mean Square) algorithm and the feedback control uses a multivariable digital LQG(Linear Quadratic Gaussian) algorithm. Experimental results show that an effective reduction of sound transmission is achieved by the hybrid control scheme when both vibration and noise measurement signals are incorporated in the controller.

  • PDF

Design of a Low-Power CMOS Fractional-N Frequency Synthesizer for 2.4GHz ISM Band Applications (2.4GHz ISM 대역 응용을 위한 저전력 CMOS Fractional-N 주파수합성기 설계)

  • Oh, Kun-Chang;Kim, Kyung-Hwan;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.60-67
    • /
    • 2008
  • A low-power 2.4GHz fractional-N frequency synthesizer has been designed for 2.4GHz ISM band applications such as Bluetooth, Zigbee, and WLAN. To achieve low-power characteristic, the design has been focused on the power optimization of power-hungry blocks such as VCO, prescaler, and ${\Sigma}-{\Delta}$ modulator. An NP-core type VCO is adopted to optimize both phase noise and power consumption. Dynamic D-F/Fs with no static DC current are employed in designing the low-power prescaler circuit. The ${\Sigma}-{\Delta}$ modulator is designed using a modulus mapping circuit for reducing hardware complexity and power consumption. The designed frequency synthesizer which was fabricated using a $0.18{\mu}m$ CMOS process consumes 7.9mA from a single 1.8V supply voltage. The experimental results show that a phase noise of -118dBc/Hz at 1MHz offset, the reference spur of -70dBc at 25MHz offset, and the channel switching time of $15{\mu}s$ over 25MHz transition have been achieved. The designed chip occupies an area of $1.16mm^2$ including pads where the core area is only $0.64mm^2$.

Analysis of the Sound Radiation of Transmission Gearbox Housing and Reduction Design (변속기 케이스에서 발생하는 방사소음 해석 및 저감 설계)

  • Jeong, Seong-Young;Oh, Ha-Yeong;Park, Jun-Hong;Park, Gyung-Jin;Lee, Hyun-Ah;Choi, Joong-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.521-527
    • /
    • 2010
  • This article presents a method to calculate the sound radiation of transmission gearbox housing by using Helmholtz integral. Rayleigh integral is used to verify the method. Half-space radiation is considered because the actual gearbox housing is on hard place like concrete. For optimization, orthogonal array is used as a fractional factorial design method. Sound Radiation is calculated with simple source like plate and sphere shape, then actual gearbox BEM model is applied to the method.

Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam (점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF

The Study of Dynamic Characteristic of a Viscous Fluid Damper in Vibration Isolation (진동 방지용 점성 유체 댐퍼의 동특성 해석에 관한 연구)

  • 권오병;이강민;김유민;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1136-1140
    • /
    • 2001
  • Viscous fluid damper is used for vibration isolation of piping system, presses, turbo-generator and other heavy industrial equipments, as well as seismic isolation of buildings structure. So dynamic characteristic of viscous fluid damper is very important. This paper presents the result of the study of dynamic characteristic of viscous fluid damper. And the force-displacement relation of the viscous damper is described by experimentally calibrated fractional derivative Maxwell Model. The proposed model is validated by dynamic testing and A good agreement between predicted and experimental results is obtained.

  • PDF

Experimental research of dynamic behaviors at viscoelastic damper with change of orifice (점탄성 감쇠기의 간극 변화에 따른 동특성에 대한 실험적 연구)

  • Yun, Jong-Min;Lim, Sang-Hyuk;Park, Hwa-Yong;Kim, Chang-Yeol;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.744-749
    • /
    • 2011
  • Silicon oil in viscous fluid damper has a viscoelastic feature that show stiffness besides damping. These properties depend on frequency and are non-linear. A lot of research has been conducted in order to identify viscoelastic damper with mathematical model. Fractional Derivative Maxwell Model has been widely used, but this model did not explain the effect of damper size change on the damper performance. In this paper, the experimental study was conducted to validate damper's dynamic behaviors when total damper's size is changed while maintaining same aspect ratio and orifice size.

  • PDF

A 8b 1GS/s Fractional Folding-Interpolation ADC with a Novel Digital Encoding Technique (새로운 디지털 인코딩 기법을 적용한 8비트 1GS/s 프랙셔널 폴딩-인터폴레이션 ADC)

  • Choi, Donggwi;Kim, Daeyun;Song, Minkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • In this paper, an 1.2V 8b 1GS/s A/D Converter(ADC) based on a folding architecture with a resistive interpolation technique is described. In order to overcome the asymmetrical boundary-condition error of conventional folding ADCs, a novel scheme with an odd number of folding blocks and a fractional folding rate are proposed. Further, a new digital encoding technique with an arithmetic adder is described to implement the proposed fractional folding technique. The proposed ADC employs an iterating offset self-calibration technique and a digital error correction circuit to minimize device mismatch and external noise The chip has been fabricated with a 1.2V 0.13um 1-poly 6-metal CMOS technology. The effective chip area is $2.1mm^2$ (ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$) and the power dissipation is about 350mW including calibration engine at 1.2V power supply. The measured result of SNDR is 46.22dB, when Fin = 10MHz at Fs = 1GHz. Both the INL and DNL are within 1LSB with the self-calibration circuit.

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.

Performance Analysis of Fractional Bandwidth Mode Detection for a Cognitive Radio Based OFDM System (인지 라디오 기반 OFDM 시스템을 위한 부분대역모드 검출 기법의 성능 분석)

  • Lee, Ji-Hye;Wang, Jin-Soo;Kim, Yun-Hee;Yoon, Seok-Ho;Song, Lick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.238-245
    • /
    • 2010
  • For orthogonal frequency division multiplexing (OFDM) systems sharing the spectrum with narrow band primary devices, a fractional bandwidth (FBW) mode has been proposed recently to reduce the interference to the primary users. The FBW mode divides the total OFDM bandwidth into subbands and activates (or deactivates) a subset of the subbands according to the result of spectrum sensing. In this paper, we analyze the detection error probability of FBW mode information which is delivered by the sequence embedded in the preamble and evaluate the performance in wireless regional area network environments. The results show that the detection probability derived analytically estimates the actual value from simulation adequately and that a low detection error probability less than $10^{-3}$ is obtained at a low signal-to-noise power ratio.