• Title/Summary/Keyword: fourier-spectrum

Search Result 476, Processing Time 0.025 seconds

An Analysis of Inelastic Neutron Scattering by Liquid Methane

  • Chung, Chang-Hyun;Shin, Won-Kee;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.265-278
    • /
    • 1973
  • The incoherent neutron scattering cross section of molecular liquids is analyzed using a damping function model for correlation functions of molecular translations and rotations. The present approach is different from recent works in that the scattering function is evaluated directly, not through the intermediate scattering function. The damping fuction is determined from a simple relation between its long-wavelength limit and the generalized frequency distribution function, and translation-rotation couplings are assumed to be neglected. A physical model is used for the translational motions of center-of-mass of a molecule, including properly its short-time and long-time behaviors. A simple model for the rotational motions is suggested which relates the damping function to the Fourier transform of the dipole correlation function, or equivalently, the infrared vibrational absorption spectrum. Theoretical absolute scattering intensities are computed for liquid methane and shown to be in satisfactory agreement with both thermal and cold neutron measurements.

  • PDF

Image Calibration Techniques for Removing Cupping and Ring Artifacts in X-ray Micro-CT Images (X-ray micro-CT 이미지 내 패임 및 동심원상 화상결함 제거를 위한 이미지 보정 기법)

  • Jung, Yeon-Jong;Yun, Tae-Sup;Kim, Kwang-Yeom;Choo, Jin-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.93-101
    • /
    • 2011
  • High quality X-ray computed microtomography (micro-CT) imaging of internal microstructures and pore space in geomaterials is often hampered by some inherent noises embedded in the images. In this paper, we introduce image calibration techniques for removing the most common noises in X-ray micro-CT, cupping (brightness difference between the periphery and central regions) and ring artifacts (consecutive concentric circles emanating from the origin). The artifacts removal sequentially applies coordinate transformation, normalization, and low-pass filtering in 2D Fourier spectrum to raw CT-images. The applicability and performance of the techniques are showcased by describing extraction of 3D pore structures from micro-CT images of porous basalt using artifacts reductions, binarization, and volume stacking. Comparisions between calibrated and raw images indicate that the artifacts removal allows us to avoid the overestimation of porosity of imaged materials, and proper calibration of the artifacts plays a crucial role in using X-ray CT for geomaterials.

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor (Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum

  • Wan-Mohtar, Wan Abd Al Qadr Imad;Young, Louise;Abbott, Grainne M.;Clements, Carol;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.

Characterization and Antioxidant Activity of Released Exopolysaccharide from Potential Probiotic Leuconostoc mesenteroides LM187

  • Zhang, Qing;Wang, Jie;Sun, Qing;Zhang, Shu-Ming;Sun, Xiang-Yang;Li, Chan-Yuan;Zheng, Miao-Xin;Xiang, Wen-Liang;Tang, Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1144-1153
    • /
    • 2021
  • A released exopolysaccharide (rEPS)-producing strain (LM187) with good acid resistance, bile salt resistance, and cholesterol-lowering properties was isolated from Sichuan paocai and identified as Leuconostoc mesenteroides subsp. mesenteroides. The purified rEPS, designated as rEPS414, had a uniform molecular weight of 7.757 × 105 Da. Analysis of the monosaccharide composition revealed that the molecule was mainly composed of glucose. The Fourier transform-infrared spectrum showed that rEPS414 contained both α-type and β-type glycosidic bonds. 1H and 13C nuclear magnetic resonance spectra analysis showed that the purified rEPS contained arabinose, galactose, and rhamnose, but less uronic acid. Scanning electron microscopy demonstrated that the exopolysaccharide displayed a large number of scattered, fluffy, porous cellular network flake structures. In addition, rEPS414 exhibited strong in vitro antioxidant activity. These results showed that strain LM187 and its rEPS are promising probiotics with broad prospects in industry.

Extraction and characterization of pepsin-soluble collagen from different mantis shrimp species

  • Hiransuchalert, Rachanimuk;Oonwiset, Nakaweerada;Imarom, Yolrawee;Chindudsadeegul, Parinya;Laongmanee, Penchan;Arnupapboon, Sukchai
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.12
    • /
    • pp.406-414
    • /
    • 2021
  • The objective of this study was to investigate the yield and characteristics of collagen protein extracted from the muscle of four different species of mantis shrimp: Miyakella nepa, Harpiosquilla harpax, Erugosquilla woodmasoni, and Odontodactylus cultrifer. Mantis shrimp muscle was extracted by using a pepsin-solubilization technique, with 0.5 M acetic acid and 5% pepsin enzyme. The highest collagen yield was from M. nepa muscle (0.478 ± 0.06%), which was significantly greater (p < 0.05) than that from H. harpax, O. cultrifer, and E. woodmasoni (0.313 ± 0.03%, 0.123 ± 0.02%, and 0.015 ± 0.00%, respectively). The freeze-dried collagen appeared as thin fibers, and formed an opaque film. The pepsin-soluble collagen (PSC) from four mantis shrimp species was analyzed by gel electrophoresis. The results showed that all species of mantis shrimp contained type I collagen, consisting of β, α1, and α2 subunits with average molecular weights of 250, 145, and 118 kDa, respectively. The study of the solubility of collagen showed that, for NaCl, collagen had the highest relative solubility in 2% NaCl (80.20 ± 4.95%). In contrast, the solubility decreased at higher NaCl concentrations. However, in terms of pH, collagen had the highest relative solubility at pH 3 (91.32 ± 5.14%), and its solubility decreased at higher pH. FT-IR spectroscopy was used to compare the collagen with a model compound. Five wavenumbers in the spectrum for model collagen were identified: Amide A (3,406-3,421 cm-1), amide B (2,916-2,940 cm-1), amide I (1,639-1,640 cm-1), amide II (1,539-1,570 cm-1), and amide III (1,234-1,250 cm-1).

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water

  • Nnabuk Okon Eddy;Rajni Garg;Rishav Garg;Samson I. Eze;Emeka Chima Ogoko;Henrietta Ijeoma Kelle;Richard Alexis Ukpe;Raphael Ogbodo;Favour Chijoke
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • Nanoparticles are known for their outstanding properties such as particle size, surface area, optical and electrical properties. These properties have significantly boasted their applications in various surface phenomena. In this work, calcium oxide nanoparticles were synthesized from periwinkle shells as an approach towards waste management through resource recovery. The sol gel method was used for the synthesis. The nanoparticles were characterized using X-Ray diffractometer (XRD), Fourier Transformed Infra-Red Spectrophotometer (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra violet visible spectrophotometer (UV-visible). While DLS and SEM underestimate the particle diameter, the BET analysis reveals surface area of 138.998 m2/g, pore volume = 0.167 m3/g and pore diameter of 2.47 nm. The nanoparticles were also employed as an adsorbent for the purification of dye (methyl orange) contaminated water. The adsorbent showed excellent removal efficiency (up to 97 %) for the dye through the mechanism of physical adsorption. The adsorption of the dye fitted the Langmuir and Temkin models. Analysis of FTIR spectrum after adsorption complemented with computational chemistry modelling to reveal the imine nitrogen group as the site for the adsorption of the dye unto the nanomaterials. The synthesized nanomaterials have an average particle size of 24 nm, showed a unique XRD peak and is thermally and mechanically stable within the investigated temperature range (30 to 70 ℃).