Browse > Article
http://dx.doi.org/10.4014/jmb.2103.03055

Characterization and Antioxidant Activity of Released Exopolysaccharide from Potential Probiotic Leuconostoc mesenteroides LM187  

Zhang, Qing (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Wang, Jie (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Sun, Qing (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Zhang, Shu-Ming (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Sun, Xiang-Yang (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Li, Chan-Yuan (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Zheng, Miao-Xin (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Xiang, Wen-Liang (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Tang, Jie (Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.8, 2021 , pp. 1144-1153 More about this Journal
Abstract
A released exopolysaccharide (rEPS)-producing strain (LM187) with good acid resistance, bile salt resistance, and cholesterol-lowering properties was isolated from Sichuan paocai and identified as Leuconostoc mesenteroides subsp. mesenteroides. The purified rEPS, designated as rEPS414, had a uniform molecular weight of 7.757 × 105 Da. Analysis of the monosaccharide composition revealed that the molecule was mainly composed of glucose. The Fourier transform-infrared spectrum showed that rEPS414 contained both α-type and β-type glycosidic bonds. 1H and 13C nuclear magnetic resonance spectra analysis showed that the purified rEPS contained arabinose, galactose, and rhamnose, but less uronic acid. Scanning electron microscopy demonstrated that the exopolysaccharide displayed a large number of scattered, fluffy, porous cellular network flake structures. In addition, rEPS414 exhibited strong in vitro antioxidant activity. These results showed that strain LM187 and its rEPS are promising probiotics with broad prospects in industry.
Keywords
Characterization; released exopolysaccharide; Leuconostoc mesenteroides; antioxidant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xu YM, Cui YL, Wang X, Yue FF, Shan YY, Liu BF, et al. 2019. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 128: 480-492.   DOI
2 Bomfim VB, Neto JHPL, Leite KS, Vieira EDA, Iacomini M, Silva CM, Santos KMOD, et al. 2020. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT. 127: 109349.   DOI
3 Jiang C, Wang M, Liu J, Gan D, Zeng X. 2011. Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohydr. Polym. 84: 851-857.   DOI
4 Zhu HJ, Tian L, Zhang L, Bi JX, Song QQ, Yang H, et al. 2018. Preparation, characterization and antioxidant activity of polysaccharide from spent Lentinus edodes substrate. Int. J. Biol. Macromol. 112: 976-984.   DOI
5 Wu S, Huang X. 2017. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas. Food Chem. 216: 243-246.   DOI
6 Min WH, Fang XB, Wu T, Fang L, Liu CL, Wang J. 2019. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. J. Biosci. Bioeng. 127: 758-766.   DOI
7 Adesulu-Dahunsi AT, Sanni AI, Jeyaram K. 2018. Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. L.W.T. Food Sci. Technol. 87: 432-442.   DOI
8 Cao J, Yang J, Hou Q, Xu H, Zheng Y, Zhang H, et al. 2017. Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT sequencing technology. Food Control 78: 14-23.   DOI
9 LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24: 160-168.   DOI
10 Zhu Y, Wang X, Pan W, Shen X, He Y, Yin H, et al. 2019. Exopolysaccharides produced by yogurt-texture improving lactobacillus plantarum RS20D and the immunoregulatory activity. Int. J. Biol. Macromol. 121: 342-349.   DOI
11 Laino J, Villena J, Kanmani P, Kitazawa H. 2016. Immunoregulatory effects triggered by lactic acid bacteria exopolysaccharides: new insights into molecular interactions with host cells. Microorganisms 4: 27.   DOI
12 Moslehi-Jenabian S, Lindegaard L, Jespersen L. 2010. Beneficial effects of pobiotic and food borne yeasts on human health. Nutrients 2: 449-473.   DOI
13 Li C, Fu X, Luo F, Huang Q. 2013. Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll. 32: 79-86.   DOI
14 Savadogo A, Ouattara CAT, Savadogo PW, Barro N, Ouattara AS, Traore AS. 2003. Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples. Afr. J. Biotechnol. 3: 189-194.   DOI
15 Wang K, Niu M, Song D, Song X, Zhao J, Wu Y, et al. 2020. Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. J. Biosci. Bioeng. 129: 206-214.   DOI
16 Xue BL, Wen JL, Xu F, Sun RC. 2012. Structural characterization of hemicelluloses fractionated by graded ethanol precipitation from Pinus yunnanensis. Carbohydr. Res. 352: 159-165.   DOI
17 Rai AK, Jini R, Swapna HC, Sachindra NM, Bhaskar N, Baskaran V. 2011. Application of native lactic acid bacteria (LAB) for fermentative recovery of lipids and proteins from fish processing wastes: bioactivities of fermentation products. J. Aquat. Food Prod. Technol. 20: 32-44.   DOI
18 Xia Z. 2015. Preparation of the oligosaccharides derived from Flammulina velutipes and their antioxidant activities. Carbohydr. Polym. 118: 41-43.   DOI
19 Feng K, Chen W, Sun L, Liu J, Zhao Y, Li L, et al. 2015. Optimization extraction, preliminary characterization and antioxidant activity in vitro of polysaccharides from Stachys sieboldii Miq. Tubers. Carbohydr. Polym. 125: 45-52.   DOI
20 Sawa N, Okamura K, Zendo T, Himeno K, Nakayama J, Sonomoto K. 2010. Identification and characterization of novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU15. J. Appl. Microbiol. 109: 282-291.   DOI
21 Ryan PM, Stolte EH, London LEE, Wells JM, Long SL, Joyce SA, et al. 2019. Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe. BMC Microbiol. 19: 33.   DOI
22 Jin H, Jeong Y, Yoo SH, Johnston TV, Ku S, Ji GE. 2019. Isolation and characterization of high exopolysaccharide-producing Weissella confusa VP30 from young children's feces. Microb. Cell Fact. 18: 110.   DOI
23 Rajoka MSR, Mehwish HM, Hayat HF, Hussain N, Sarwar S, Aslam H, et al. 2019. Characterization, the antioxidant and antimicrobial activity of exopolysaccharide isolated from poultry origin lactobacilli. Probiotics Antimicrob. Proteins 11: 1132-1142.   DOI
24 You X, Yang L, Zhao X, Ma K, Chen X, Zhang C, et al. 2020. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. Int. J. Biol. Macromol. 158: 408-419.   DOI
25 Di W, Zhang L, Wang S, Yi H, Han X, Fan R, et al. 2017. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydr. Polym. 171: 307-315.   DOI
26 Tang W, Dong M, Wang W, Han S, Rui X, Chen X, et al. 2017. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydr. Polym. 173: 654-664.   DOI
27 Mirlohi M, Madany G, Hassanzade A. Yahay MJ. 2011. On the colorimetric method for cholesterol determination in the laboratory media. Int. J. Biol. Chem. 6: 37-41.   DOI
28 Wang L, Liu F, Wang A, Yu Z, Xu Y, Yang Y. 2017. Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin (Cucurbita moschata) seeds. Food Hydrocoll. 66: 357-364.   DOI
29 Lee S, Kim M. 2019. Leuconostoc mesenteroides MKSR isolated from kimchi possesses α-glucosidase inhibitory activity, antioxidant activity, and cholesterol-lowering effects. LWT. 116: 108570.   DOI
30 Shevtsov AB, Kushugulova AR, Kojakhmetov SS, Oralbaeva SS, Stoyanova LG, Abzhalelov AB, et al. 2011. Detection of Lactobacillus species using a gene fragment of the RNA polymerase beta subunit rpoB. Moscow Univ. Biol. Sci. Bull. 66: 22-27.   DOI
31 Angmo K, Kumari A, Savitri, Bhalla TC. 2016. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT Food Sci. Technol. 66: 428-435.   DOI
32 Bhat B, Bajaj BK. 2018. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresour. Technol. 254: 264-267.   DOI
33 Guo XH, Kim JM, Namb HM, Park SY, Kim JM. 2010. Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 16: 321-326.   DOI
34 Succi M, Tremonte P, Reale A, Sorrentino E, Grazia L, Pacifico S, et al. 2005. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244: 129-137.   DOI
35 Nami Y, Panahi B, Jalaly HM, Bakhshayesh RV, Hejazi MA. 2020. Application of unsupervised clustering algorithm and heat-map analysis for selection of lactic acid bacteria isolated from dairy samples based on desired probiotic properties. L.W.T. Food Sci. Technol. 118: 108839.   DOI
36 Wang J, Zhao X, Yang Y, Zhao A, Yang Z. 2015. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int. J. Biol. Macromol. 74: 119-126.   DOI
37 Saravanan C, Shetty PKH. 2016. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int. J. Biol. Macromol. 90: 100-106.   DOI
38 Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. 2014. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 63: 133-139.   DOI
39 Li W, Xia X, Tang W, Ji J, Rui X, Chen X, et al. 2015. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. J. Agric. Food Chem. 63: 3454-3463.   DOI
40 Vinogradov E, Sadovskaya I, Grard T, Chapot-Chartier MP. 2016. Structural studies of the rhamnose-rich cell wall polysaccharide of Lactobacillus casei BL23. Carbohydr. Res. 435: 156-161.   DOI
41 Das D, Goyal A. 2014. Characterization and biocompatibility of glucan: a safe food additive from probiotic Lactobacillus plantarum DM5. J. Sci. Food Agric. 94: 683-690.   DOI
42 Sun L, Wang L, Li J, Liu H. 2014. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta. Food Chem. 160: 1-7.   DOI
43 Zheng JQ, Mao XJ, Geng LJ, Yang GM, Xu CP. 2014. Production optimization, preliminary characterization and bioactivity of exopolysaccharides from Incutis tamaricis (Pat.) Fiasson & Niemela. J. Taiwan Inst. Chem. Eng. 45: 725-733.   DOI
44 Rani RP, Anandharaj M, Sabhapathy P, Ravindran AD. 2017. Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int. J. Biol. Macromol. 96: 1-10.   DOI
45 Rehman R, Wang Y, Wang J, Geng W. 2018. Physicochemical analysis of Mozzarella cheese produced and developed by the novel EPS-producing strain Lactobacillus kefiranofaciens ZW3. Int. J. Dairy Technol. 71: 90-98.   DOI
46 Liu CH, Wang CH, Xu ZL, Wang Y. 2007. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochem. 42: 961-970.   DOI
47 Wang X, Shao C, Liu L, Guo X, Xu Y, Lv X. 2017. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 103: 1173-1184.   DOI
48 Lin C, Wang C, Chang S, Inbaraj BS, Chen B. 2009. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int. J. Biol. Macromol. 45: 146-151.   DOI
49 Ibarburu I, Puertas AI, Berregi I, Rodriguez-Carvajal MA, Prieto A, Duenas MT. 2015. Production and partial characterization of exopolysaccharides produced by two Lactobacillus suebicus strains isolated from cider. Int. J. Food Microbiol. 214: 54-62.   DOI
50 Olivares-Illana V, Lopez-Munguia A, Olvera C. 2003. Molecular characterization of inulosucrase from Leuconostoc citreum: a fructosyltransferase within a glucosyltransferase. J. Bacteriol. 185: 3606-3612.   DOI
51 Vinderola CG, Reinheimer JA. 2003. Lactic acid starter and probiotic bacteria: a comparative "in vitro" study of probiotic characteristics and biological barrier resistance. Food Res. Int. 36: 895-904.   DOI
52 Liu T, Zhou K, Yin S, Liu S, Zhu Y, Yang Y, et al. 2019. Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle. Int. J. Biol. Macromol. 134: 516-526.   DOI
53 Hu X, Pang X, Wang PG, Chen M. 2019. Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan pickles. Carbohydr. Polym. 204: 9-16.   DOI
54 Miao M, Bai A, Jiang B, Song Y, Cui SW, Zhang T. 2014. Characterisation of a novel water-soluble polysaccharide from Leuconostoc citreum SK24.002. Food Hydrocoll. 36: 265-272.   DOI
55 Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM. 2015. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. L.W.T. Food Sci. Technol. 64: 1179-1186.   DOI
56 Song M, Yun B, Moon JH, Park DJ, Lim K, Oh S. 2015. Characterization of selected Lactobacillus strains for use as probiotics. Korean J. Food Sci. Anim. Resour. 35: 551-556.   DOI
57 Yu XH, Liu Y, Wu XL, Liu LZ, Fu W, Song DD. 2017. Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohydr. Polym. 156: 9-18.   DOI
58 Walia M, Sharma U, Bhushan S, Kumar N, Singh B. 2013. Arabinan-type polysaccharides from industrial apple pomace waste. Chem. Nat. Compd. 49: 794-798.   DOI
59 Wu Y, Hu N, Pan Y, Zhou L, Zhou X. 2007. Isolation and characterization of a mannoglucan from edible Cordyceps sinensis mycelium. Carbohydr. Res. 342: 870-875.   DOI
60 Wang L, Liu HM, Qin GY. 2017. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem. 234: 314-322.   DOI
61 Fan J, Feng H, Yu Y, Sun M, Liu Y, Li T, et al. 2017. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr. Polym. 157: 629-636.   DOI
62 Ruhmann B, Schmid J, Sieber V. 2015. Methods to identify the unexplored diversity of microbial exopolysaccharides. Front. Microbiol. 6: 565.   DOI