Browse > Article
http://dx.doi.org/10.4014/jmb.1510.10018

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum  

Wan-Mohtar, Wan Abd Al Qadr Imad (Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Strathclyde University)
Young, Louise (Strathclyde Institute for Drug Research (SIDR), SIPBS, Strathclyde University)
Abbott, Grainne M. (Strathclyde Institute for Drug Research (SIDR), SIPBS, Strathclyde University)
Clements, Carol (Strathclyde Institute for Drug Research (SIDR), SIPBS, Strathclyde University)
Harvey, Linda M. (Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Strathclyde University)
McNeil, Brian (Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Strathclyde University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.6, 2016 , pp. 999-1010 More about this Journal
Abstract
Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.
Keywords
Ganoderma lucidum; (1,3)-β-D-glucan sulfate; antimicrobial activity; cytotoxicity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. 1994. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch. Pharm. Res. 17: 438-442.   DOI
2 Zhang J, Liu Y-J, Park H-S, Xia Y-M, Kim G-S. 2012. Antitumor activity of sulfated extracellular polysaccharides of Ganoderma lucidum from the submerged fermentation broth. Carbohydr. Polym. 87: 1539-1544.   DOI
3 Kimura Y, Taniguchi M, Baba K. 2002. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res. 22: 3309-3318.
4 Llaurado G, Morris HJ, Ferrera L, Camacho M, Castan L, Lebeque Y, et al. 2015. In-vitro antimicrobial activity and complement/macrophage stimulating effects of a hot-water extract from mycelium of the oyster mushroom Pleurotus sp. Innov. Food Sci. Emerg. 30: 177-183.   DOI
5 Ma CW, Feng MY, Zhai XF, Hu MH, You LJ, Luo W, Zhao MM. 2013. Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. J. Taiwan Inst. Chem. Eng. 44: 886-894.   DOI
6 Li WJ, Nie SP, Liu XZ, Zhang H, Yang Y, Yu Q, Xie MY. 2012. Antimicrobial properties, antioxidant activity and cytotoxicity of ethanol-soluble acidic components from Ganoderma atrum. Food Chem. Toxicol. 50: 689-694.   DOI
7 Liu Y, Zhang J, Tang Q, Yang Y, Guo Q, Wang Q, et al. 2014. Physicochemical characterization of a high molecular weight bioactive beta-D-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydr. Polym. 101: 968-974.   DOI
8 Shi M, Zhang Z, Yang Y. 2013. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr. Polym. 95: 200-206.   DOI
9 Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo P. 1990. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents. Chemother. 34: 2019-2023.   DOI
10 Liao SF, Liang CH, Ho MY, Hsu TL, Tsai TI, Hsieh YS, et al. 2013. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc. Natl. Acad. Sci. USA 110: 13809-13814.   DOI
11 Khalaf AI, Bourdin C, Breen D, Donoghue G, Scott FJ, Suckling CJ, et al. 2012. Design, synthesis and a ntibacterial activity of minor groove binders: the role of non-cationic tail groups. Eur. J. Med. Chem. 56: 39-47.   DOI
12 Wagner R, Mitchell DA, Sassaki GL, Amazonas MALD, Berovic M. 2003. Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technol. Biotechnol. 41: 371-382.
13 Wang Y-J, Yao S-J, Guan Y-X, Wu T-X, Kennedy J. 2005. A novel process for preparation of (1→3)-β-D-glucan sulphate by a heterogeneous reaction and its structural elucidation. Carbohydr. Polym. 59: 93-99.   DOI
14 Williams DL, Pretus HA, McNamee RB, Jones EL, Ensley HE, Browder IW. 1992. Development of a water-soluble, sulfated (1→3)-beta-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr. Res. 235: 247-257.   DOI
15 Peng Y, Zhang L, Zhang Y, Xu X, Kennedy JF. 2005. Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydr. Polym. 59: 351-356.   DOI
16 Suzuki T, Ohno N, Adachi Y, Cirelli AF, Covian JA, Yadomae T. 1991. Preparation and biological activities of sulfated derivatives of (1-3)-beta-D-glucans. J. Pharmacobiodyn. 14: 256-266.   DOI
17 Shahidi F, Arachchi JKV, Jeon Y-J. 1999. Food applications of chitin and chitosans. Trends Food Sci. Technol. 10: 37-51.   DOI
18 Wang J, Zhang L. 2009. Structure and chain conformation of five water-soluble derivatives of a β-D-glucan isolated from Ganoderma lucidum. Carbohydr. Res. 344: 105-112.   DOI
19 Xu Z, Chen X, Zhong Z, Chen L, Wang Y. 2011. Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 39: 15-27.   DOI
20 Skalicka-Wozniak K, Szypowski J, Los R, Siwulski M, Sobieralski K, Glowniak K, Malm A. 2012. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt. Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Soc. Bot. Pol. 81: 17-21.   DOI
21 Wang J, Zhang L, Yu Y, Cheung PC. 2009. Enhancement of antitumor activities in sulfated and carboxymethylated polysaccharides of Ganoderma lucidum. J. Agric. Food Chem. 57: 10565-10572.   DOI
22 Karnjanapratum S, Tabarsa M, Cho M, You S. 2012. Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens. Int. J. Biol. Macromol. 51: 720-729.   DOI
23 Liu YJ, Shen J, Xia YM, Zhang J, Park HS. 2012. The polysaccharides from Ganoderma lucidum: are they always inhibitors on human hepatocarcinoma cells? Carbohydr. Polym. 90: 1210-1215.   DOI
24 Slany M, Jezek P, Fiserova V, Bodnarova M, Stork J, Havelkova M, et al. 2011. Mycobacterium marinum infections in humans and tracing of its possible environmental sources. Can. J. Microbiol. 58: 39-44.   DOI
25 Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJR, Vasconcelos MH, Sokovic M. 2015. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114: 38-55.   DOI
26 Gao Y, Zhou S, Huang M, Xu A. 2003. A ntibacterial a nd antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromycetideae): a review. Int. J. Med. Mushrooms 5: 235–246.
27 Heleno SA, Ferreira IC, Esteves AP, Ćirić A, Glamočlija J, Martins A, et al. 2013. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem. Toxicol. 58: 95-100.   DOI
28 Hernández-Lauzardo A, Bautista-Baños S, Velázquez-del Valle M, Méndez-Montealvo M, Sánchez-Rivera M, Bello-Pérez L. 2008. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydr. Polym. 73: 541-547.   DOI
29 Ji CF, Ji YB, Meng DY. 2013. Sulfated modification and anti-tumor activity of laminarin. Exp. Ther. Med. 6: 1259-1264.
30 Fazenda ML, Harvey LM, McNeil B. 2010. Effects of dissolved oxygen on fungal morphology and process rheology during fed-batch processing of Ganoderma lucidum. J. Microbiol. Biotechnol. 20: 844-851.   DOI
31 Dutta P, Tripathi S, Mehrotra G, Dutta J. 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114: 1173-1182.   DOI
32 Cechinel-Filho V. 2012. Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives. John Wiley & Sons, Inc., Hoboken, New Jersey.
33 Alvarez-Suarez JM, Tulipani S, Díaz D, Estevez Y, Romandini S, Giampieri F, et al. 2010. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 48: 2490-2499.   DOI
34 Bao XF, Wang XS, Dong Q, Fang JN, Li XY. 2002. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 59: 175-181.   DOI
35 Bao H, Choi W-S, You S. 2010. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus. Biosci. Biotechnol. Biochem. 74: 1408-1414.   DOI
36 Chen S, Wang J, Xue C, Li H, Sun B, Xue Y, Chai W. 2010. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis. Carbohydr. Polym. 81: 560-566.   DOI
37 Daligault H, Davenport K, Minogue T, Bishop-Lilly K, Bruce D, Chain P, et al. 2014. Draft genome assembly of Klebsiella pneumoniae type strain ATCC 13883. Genome Announc. 2: e00939-e00914.
38 Devlieghere F, Vermeulen A, Debevere J. 2004. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21: 703-714.   DOI
39 Ellington MJ, Hope R, Livermore DM, Kearns AM, Henderson K, Cookson BD, et al. 2010. Decline of EMRSA-16 amongst methicillin-resistant Staphylococcus aureus causing bacteraemias in the UK between 2001 and 2007. J. Antimicrob. Chemother. 65: 446-448.   DOI
40 Han MD, Han YS, Hyun SH, Shin HW. 2008. Solubilization of water-insoluble β-glucan isolated from Ganoderma lucidum. J. Environ. Biol. 29: 237-242.