• Title/Summary/Keyword: four-dimensional

Search Result 1,755, Processing Time 0.038 seconds

The Effect of QR Information Service on Medical Service Loyalty (의료서비스충성도에 대한 QR정보서비스의 효과)

  • Kim, Mi Ra;Hwang, Yoon Yong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.119-128
    • /
    • 2022
  • This study investigated the influence relationship of information service using QR code on customer's service quality perception and loyalty behavior for medical service in the physical environment. As a result of the study, when medical institutions provide location information services about the physical environment by utilizing the usefulness and reliability of QR codes, the perceived quality of customers' QR information will be strengthened, and furthermore, loyalty behavior toward medical services will increase in the future. Considering the spread of smartphones as a popular digital medium today, marketers use QR codes to connect and provide four-dimensional information services without time and place restrictions, thereby strengthening the interactive experience with customers. And these efforts suggest that it can contribute to improving service image and strengthening loyalty beyond simply providing service information to companies.

Effect of endometrial cell-conditioned medium and platelet-rich plasma on the developmental competence of mouse preantral follicles: An in vitro study

  • Taghizabet, Neda;Bahmanpour, Soghra;Zarei-fard, Nehleh;Mohseni, Gholamreza;Aliakbari, Fereshteh;Dehghani, Farzaneh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • Objective: The aim of this study was to evaluate the impacts of platelet-rich plasma (PRP) and conditioned medium (CM) derived from endometrial stromal cells on mouse preantral follicle culture in a two-dimensional system to produce competent mature oocytes for fertilization. Methods: In total, 240 preantral follicles were isolated from female mouse ovarian tissue and divided into four groups. The preantral follicles were isolated three times for each group and then cultured, respectively, in the presence of alpha minimum essential medium (control), PRP, CM, and PRP+CM. The in vitro growth, in vitro maturation, and cleavage percentage of the preantral follicles were investigated. Immunocytochemistry (IHC) was also conducted to monitor the meiotic progression of the oocytes. Additionally, the mRNA expression levels of the two folliculogenesis-related genes (Gdf9 and Bmp15) and two apoptosis-related genes (Bcl2 and Bax) were investigated using real-time polymerase chain reaction. Results: In the PRP, CM, and PRP+CM groups, the preantral follicle maturation (evaluated by identifying polar bodies) were greater than the control group. The cleavage rate in the CM, and PRP+CM groups were also greater than the control group. IHC analysis demonstrated that in each treatment group, meiotic spindle was normal. In the PRP+CM group, the gene expression levels of Bmp15, Gdf9, and Bcl2 were greater than in the other groups. The Bax gene was more strongly expressed in the PRP and control groups than in the other groups. Conclusion: Overall, the present study suggests that the combination of CM and PRP can effectively increase the growth and cleavage rate of mouse preantral follicles in vitro.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Numerical Formulation of Thermo-Hydro-Mechanical Interface Element (열-수리-역학 거동 해석을 위한 경계면 요소의 수식화)

  • Shin, Hosung;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.45-52
    • /
    • 2022
  • Because discontinuity in the rock mass and contact of soil-structure interaction exhibits coupled thermal-hydromechanical (THM) behavior, it is necessary to develop an interface element based on the full governing equations. In this study, we derive force equilibrium, fluid continuity, and energy equilibrium equations for the interface element. Additionally, we present a stiffness matrix of the elastoplastic mechanical model for the interface element. The developed interface element uses six nodes for displacement and four nodes for water pressure and temperature in a two-dimensional analysis. The fully coupled THM analysis for fluid injection into a fault can model the complicated evolution of injection pressure due to decreasing effective stress in the fault and thermal contraction of the surrounding rock mass. However, the result of hydromechanical analysis ignoring thermal phenomena overestimates hydromechanical variables.

Development of Quantity Take-off Building Information Modeling System for Retaining Wall (객체 기반 물량 산출을 위한 흙막이 BIM 설계 시스템 구축)

  • Kang, SeoungWoo;Kim, Eun-Seok;Lee, Si-Eun;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.197-205
    • /
    • 2022
  • In this paper, a retaining wall system, developed using building Information modeling (BIM), is presented. Based on the information from a literature review, elementary technologies for the system were defined and developed. First, for the elementary technology, BIM libraries were constructed using standards and previous study results to achieve versatility and reusability. Second, methods for determining the quantity take-off (QTO) of a retaining wall were reviewed for an earth-work calculating system. Additionally, inverse distance weighting interpolation was used to generate topography. Finally, four formulas for calculating the QTO were proposed and devised for each element. After its development, the BIM system was analyzed and verified through comparison with a two-dimensional drawing-based QTO. The proposed system is deemed to be practical for determining the QTO of retaining walls and earth works. The contributions and limitations of the research are discussed in this paper.

Numerical studies on flow-induced motions of a semi-submersible with three circular columns

  • Tian, Chenling;Liu, Mingyue;Xiao, Longfei;Lu, Haining;Wang, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.599-616
    • /
    • 2021
  • The semi-submersible with three circular columns is an original concept of efficient multifunctional platform, which can be used for marginal oil, gas field, and Floater of Wind Turbines (FOWT). However, under certain flow conditions, especially in uniform current with specific velocities, the eddies will alternatively form and drop behind columns, resulting in the fluctuating lift force and drag force. Consequently, the semi-submersible will subject to the Flow-Induced Motions (FIM). Based on the Detached Eddy Simulation (DES) method, the numerical studies were carried out to understand the FIM characteristics of the three-column semi-submersible at two different parameters, i.e., current incidences (0°, 30°, and 60°-incidences) and reduced velocities (4 ≤ Ur ≤ 14). The results indicate that the lock-in range of 6 ≤ Ur ≤ 10 for the transverse motions is presented, and the largest transverse non-dimensional nominal amplitude is observed at 60°-incidence, with a value of Ay/D = 0:481. The largest yaw amplitude Ayaw is around 3.0° at 0°-incidence in the range of 8 ≤ Ur ≤ 12. The motion magnitude is basically the same as that of a four-column semi-submersible. However, smaller responses are presented compared to those of the three-column systems revealing the mitigation effect of the pontoon on FIM.

Zero-waste fashion design using Sophia Vyzoviti's folding technique (소피아 비조비티의 폴딩 기법을 활용한 제로 웨이스트 패션 디자인)

  • Dogan, Oykum;Seo, Meehee;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.4
    • /
    • pp.513-528
    • /
    • 2022
  • The purpose of this study is to understand the concept of zero-waste design and to apply Sophia Vyzoviti's folding techniques to develop a zero-waste fashion design method that contributes to sustainable fashion design. In this study, we explore the method and characteristics of zero-waste fashion design based on the concept of folding described in Sophia Vyzoviti's book on folding techniques. Using the autonomy of Sophia Vyzoviti's folding technique, four changeable folding fashion designs were developed and produced, demonstrating zero-waste fashion design. The results were as follows. First, the development of fashion designs using Sophia Vyzoviti's folding techniques enabled the development and production of free and creative zero-waste fashion designs that were three-dimensional, continuous, fluid, and full of potential. Second, the production of zero-waste patterns was further developed into a transformable fashion design that can be used with geometric patterns. These folding techniques produced a fashion design method that could transform one piece of clothing, demonstration the potential for maintenance of creativity using a zero-waste design based on these folding techniques. Third, the double-faced fabric, Neoprene, was chosen as an appropriate material as it emphasizes the depth of folding with application of two colors and its cotton/polyester blend that is suitable for folding.

Nonlinear Transformation of Long Waves at a Bottom Step (해저단에서의 장파의 비선형 변형)

  • Mrichina, Nina R.;Pelinovsky, Efim N.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.161-167
    • /
    • 1992
  • We consider the preparation of long finite amplitude nondispersive waves over a step bottom between two regions of finite different depths. Two dimensional motion is assumed. with the wave crests parallel to the step, and irrotational flow in the inviscid fluid is considered. To describe the transformation of finite amplitude waves we use the finite-amplitude shallow-water equations, the conditions of mass flow conservation and pressure continuity at the cut above the step in Riemann's variables. The equations define four families of curves-characteristics on which the values of the Riemann's invariants remain constant and a system of two nonlinear equations that relates the amplitudes of incident reflected and transmitted waves. The system obtained is difficult to analyze in common form. Thus we consider some special cases having practical usage for tsunami waves. The results obtained are compared with the long wave theory and significant nonlinear effects are found even for quite small amplitude waves.

  • PDF