• 제목/요약/키워드: forward modeling

Search Result 328, Processing Time 0.027 seconds

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

Modeling for Utility Interactive Photovoltaic Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광 발전시스템의 배전계통 연계운전을 위한 모델링)

  • Kim, Woo-Hyun;Kang, Min-Kyu;Kim, Eung-Sang;Kim, Ji-Won;Ro, Byong-Kwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1180-1182
    • /
    • 1999
  • Modeling for utility interactive photovoltaic power generation system has been studied using PSCAD/EMTDC. The proposed model system consists of a simple utility circuit configuration, 3kW of single phase utility interactive photovoltaic system, single phase PWM voltage source inverter module, and feed forward PID controller as control circuit. In the system, the DC current is assumed constant, and the voltage source inverter provides sinusoidal ac current for the loads of utility system. The simulation results are given in order to verify the effectiveness of the proposed model. The phases of output voltage of utility system and the output current of the inverter module are compared. Especially, the compensation effect of the photovoltaic system for the unbalanced load is analyzed. and the transient phenomena for a phase to ground fault are also simulated.

  • PDF

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks

  • Ashteyat, Ahmed M.;Ismeik, Muhannad
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • Artificial neural network models can be successfully used to simulate the complex behavior of many problems in civil engineering. As compared to conventional computational methods, this popular modeling technique is powerful when the relationship between system parameters is intrinsically nonlinear, or cannot be explicitly identified, as in the case of concrete behavior. In this investigation, an artificial neural network model was developed to assess the residual compressive strength of self-compacted concrete at elevated temperatures ($20-900^{\circ}C$) and various relative humidity conditions (28-99%). A total of 332 experimental datasets, collected from available literature, were used for model calibration and verification. Data used in model development incorporated concrete ingredients, filler and fiber types, and environmental conditions. Based on the feed-forward back propagation algorithm, systematic analyses were performed to improve the accuracy of prediction and determine the most appropriate network topology. Training, testing, and validation results indicated that residual compressive strength of self-compacted concrete, exposed to high temperatures and relative humidity levels, could be estimated precisely with the suggested model. As illustrated by statistical indices, the reliability between experimental and predicted results was excellent. With new ingredients and different environmental conditions, the proposed model is an efficient approach to estimate the residual compressive strength of self-compacted concrete as a substitute for sophisticated laboratory procedures.

Modeling of High-speed Tapping Touque Considering Friction Force (마찰력을 고려한 고속탭핑 토크 모델링)

  • Lee, Don-Jin;Gang, Ji-Ung;Jeon, Hyeon-Bae;Kim, Seon-Ho;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.67-73
    • /
    • 2001
  • This paper aims at developing a torque model for the high-speed tapping with small-diameter taps. As recent industries such as automobile and information technology grows, taps smaller than 5mm in diameter are needed much more. In that occasion, the friction force between a tap surface and a workpiece plays much more important role in the tapping torque than in he larger tapping. Tapping mechanism was analysed based on the tap geometry. It has two steps : one is a forward cutting composed of the chamfered threading and full threading and the other is the backward cutting. The torque by the cutting force in the chamfered threading is calculated using the cutting area and the specific cutting force while the torque by the friction force, which is rather dominant than the cutting force both in the full threading and in the backward cutting, is calculated using the normal force on the threads and the friction coefficient. The experiment has shown that the results by the proposed torque model fit quite well with the acutal measurements within the error of 10%.

  • PDF

Digital Human Modeling for Human-centered CAD System (인간 친화적 설계 시스템을 위한 디지털 인체 모델 구성 연구)

  • Jung, Moon-Ki;Lee, Kun-Woo;Cho, Hyun-Deok;Kim, Tae-Woo;Yanzhao, Ma;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.429-440
    • /
    • 2007
  • The purpose of this research is to develop the Human-centered CAD system in which human factors can be considered during the design stage. For this system there are several issues to research, like the digital human modeling technology, the definition of interactions between human and product, the simulation of human motion when using the product, and the bio-mechanical analysis of human, etc. This paper introduces how to construct the kinematical structure of the digital human model. For our digital human model H-ANIM, the international specification of humanoid animation is referenced. And we added the skeleton geometry and the skin surfaces to our model. And it can manipulate its joints by forward kinematics. Also the IKAN inverse kinematics algorithm is adopted to support the posture prediction of the digital human model in the product environment. All of these ideas are implemented using CAD API so that we can apply these functions to the current commercial CAD systems. In this manner, the human factor issues can be effectively taken into account at the early design phase and the costs of bio-mechanical evaluation will be significantly reduced.

Electric Characteristics and Modeling of Asymmetric n-MOSFETs for Improving Packing Density (집적도 향상을 위한 비대칭 n-MOSFET의 전기적 특성 및 모델링)

  • Gong, Dong-Uk;Lee, Jae-Seong;Nam, Gi-Hong;Lee, Yong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.7
    • /
    • pp.464-472
    • /
    • 2001
  • Asymmetric n-MOSFET's for improving packing density have been fabricated with 0.35 ${\mu}{\textrm}{m}$ CMOS process. Electrical characteristics of asymmetric n-MOSFET show a lower saturation drain current and a higher linear resistance compared to those of symmetric devices. Substrate current of asymmetric MOSFET is lower than that of symmetric devices. Asymmetric n-MOSFET's have been modeled using a parasitic resistance associated with abnormally structured drain or source and a conventional n-MOSFET model. MEDICI simulation has been done for accuracy of this modeling. Simulated values of reverse as we11 as forward saturation drain current show good agreement with measured values for asymmetric device.

  • PDF

A Study of Optimization Approach for GPS Anti-Jamming System's Integration on Military Aircraft Based on the Requirement of Capability (요구성능 기반의 군용 항공기 항재밍 GPS 체계 구축 최적화 방안 연구)

  • Lee, Moongul;Shin, Kisu;Choi, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.66-83
    • /
    • 2015
  • Global Positioning System(hereafter; GPS) is recently an essential element in the various navigation and weapon delivery systems of military aircraft. However, GPS is vulnerable to the jamming threats since its signal power is very weak. Therefore, ROK defense has been concerning how to resolve this issue and how to integrate these systems needed, and is trying to acquire the proper anti-jamming GPS system. This study is to provide several schemes against the jamming threats effectively. We propose the several processes to analyze the required capability and demonstrate the result's of modeling and simulations(hereafter; M&S) for this integration of military aircraft, and the mathematical programming model for system optimization of military aircraft anti-jamming GPS system on the basis analysis of M&S results which could be considered available budget and the project characteristic. These schemes will be helpful on proper acquisition of these systems and. We are looking forward to contributing to the integration of anti-jamming GPS system of ROK military aircraft.

Design Methodology of System-Level Simulators for Wideband CDMA Cellular Standards (광대역 CDMA 셀룰러 표준을 위한 시스템 수준 시뮬레이터의 설계 방법론)

  • Park, Sungkyung
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2013
  • This tutorial paper presents the design methodology of system-level simulators targeted for code division multiple access (CDMA) cellular standards such as EV-DO (Evolution-Data Only) and broadcast multicast service (BCMCS). The basic structure and simulation flow of system-level simulators are delineated, following the procedure of cell layout, mobile drops, channel modeling, received power calculation, scheduling, packet error prediction, and traffic generation. Packet data transmissions on the forward link of CDMA systems and EV-DO BCMCS systems are considered for modeling simulators. System-level simulators for cellular standards are modeled and developed with high-level languages and utilized to evaluate and predict air interface performance metrics including capacity and coverage.

4-legged Walking Mechanism Using a Janssen Mechanism (얀센 메커니즘을 이용한 4 족 보행기구)

  • Hwang, Yuntae;Kim, Cheonho;Lee, Hyungseok;shin, Donghwan
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.493-497
    • /
    • 2016
  • Walking mechanism, there are many types. Prior to the modeling and design, we thought about a variety of mechanisms based on the Janssen mechanism to design a walking mechanism optimized for walking. The more the legs increases the stability of the structure, while the weight is heavy and if that advantage had the disadvantage, the legs are easier to walk in the utilization and structural aspects of the torque had fewer advantages. The disadvantage is that the instability mechanism, four-legged, but improve it and look forward to the idea of utilization and cost-effectiveness, its future utilization will be endless. To study this, we utilized a variety of software, such as m-sketch, Edison design program, we have seen the actual production through scientific experiments box.

  • PDF