• Title/Summary/Keyword: forward flight

Search Result 163, Processing Time 0.026 seconds

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV (고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계)

  • Koo, Soyeon;Lim, Seunghan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.

Development of a Radio Controlled Ornithopter 'Songgolmae' (무선조종 날개짓 비행체 '송골매' 개발)

  • Chang, Jo-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1993-1998
    • /
    • 2004
  • The present study was carried out to develop highly efficient RC ornithopter 'Songgolmae' powered by motor and battery. Designed electric ornithopter weighs 277 grams and has 3 channels radio control. 1t runs on an electric motor by a lithium polymer battery and has a gear ratio of about $75{\sim}95$ to 1 to flap its 88 cm wingspan. The aerodynamic performance of the ornithopter, applied to a flapping motion only, was validated by flight tests. Flight times have exceeded 23 minutes until the battery was used up. The flight test results indicate that the ornithopter developed here has sufficient thrust to propel itself in a forward flight. From the economical point of view and the handling of the RC ornithopter, it can be said that the developed robot ornithopter is an effective RC ornithopter. This radio controlled ornithopter flies its way high into the sky just like a real bird flies.

  • PDF

A Formation Guidance Law Design Based on Relative-Range Information for Swam Flight (군집비행을 위한 상대 거리정보 기반의 편대 유도기법 설계)

  • Kim, Sung-Hwan;Jo, Sung-Beom;Park, Sang-Hyuk;Kim, Do-Wan;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2012
  • In this paper, a formation guidance method for UAVs (Unmanned Aerial Vehicles) to simulate the formation flight of birds proposed. The proposed method solves all issues of approaching for formation, formation keeping, and scarce chance to be collided with each UAV during formation process. Also, we design the feedforward controller to compensate the change of speed and heading for maneuvering of the leader UAV and the feedback controller to consider the response lag of the system. The stability and performance of the proposed controller is verified via numerical simulations of the full 6-Dof model of UAV.

Investigation on Prediction Methods for a Rotor Averaged Inflow in Forward Flight (전진비행하는 회전익기 로터의 평균 유입류 예측기법 연구)

  • Hwang, Chang-Jeon;Chung, Ki-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Prediction methods for a rotor averaged inflow in forward flight are investigated in this study. The investigated methods are Drees linear inflow model, Mangler & Squire model and free vortex wake(FVW) method. Predictions have been performed for a four-blade rotor operating at three different advance ratios i.e. 0.15, 0.23 and 0.30, at which experimental data are available. According to results, Drees model has a limitation for the inflow non-uniformity prediction due to an inherent linear characteristics. Mangler & Squire model has a reasonable accuracy except the disk edge region. KARI FVW method has very good accuracy and has better accuracy than the other FVW method especially in inboard region. However, there are some discrepancies in retreating side due to the dynamic stall effect and in near hub region due to the fuselage upwash effect.

Development of Conceptual Design Methodology and Initial Sizing for Tip-Jet Gyroplane (Tip-jet gyroplane 개념설계 기법 개발 및 사이징)

  • Lee, Donguk;Lim, Daejin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.452-463
    • /
    • 2018
  • Tip-jet gyroplane is a type of compound helicopter that employs the tip-jet system to rotate the rotor by a reaction force from the gas jetted at the rotor tips in hovering. In forward flight, tip-jet gyroplane converts into a form of a gyroplane. Therefore, it is necessary to develop a new conceptual design method to consider three flight modes: tip-jet mode, gyroplane mode, and transient mode. This study developed the numerical code of conceptual design methodology that can consider three flight modes. The developed code was validated against the available experiment data. Based on the developed code, initial sizing of tip-jet gyroplane was performed for two mission profiles including high speed forward flight of 150knots with a mission range of 300km or 400km. Subsequently, the configuration and performance of the 3,000lb tip-jet gyroplane were analyzed.

Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm (유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Analysis of Handling Qualities for Smart Unmanned Aerial Vehicle in Helicopter Flight Mode (스마트 무인기의 회전익 모드 비행성 분석)

  • Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2005
  • The aim of this paper is to analyze handling qualities of tiltrotor aircraft(TR-S4) in helicopter flight mode including hovering and forward flight. Analysis of handling qualities is composed of aircraft response to control inputs that effect on stability and controllability. In short term response analysis, bandwidth is the critical parameter for small amplitude motions since it relates to the ability of a pilot to crisply start and stop maneuver. The handling qualities of TR-S4 in helicopter mode are analyzed with a SAS and an attitude controller and are satisfied level 1 in almost criteria with simulation of TR-S4 6-DOF nonlinear model.

  • PDF

Dynamic Performance Simulation of the Propulsion System for the CRW Type UAV Using $SIMULINK^{\circledR}$

  • Changduk Kong;Park, Jongha;Jayoung Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.499-505
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including straight bent ducts, tip-jet nozzles, a master valve and a variable main nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. In this study, in order to operate safely the propulsion system, the dynamic Performance behavior of the system was modeled and simulated using the SIMULIN $K^{ }$, which is the user-friendly GUI type dynamic analysis tool provided by MATLA $B^{ }$. In the transient performance model, the inter-component volume model was used. The performance analysis using the developed models was performed at various flight condition, valve angle positions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the inlet temperature overshoot limitation as well as the compressor surge margin. Performance analysis results using the SIMULIN $K^{ }$ performance program were compared with them using the commercial program GSP.m GSP.

  • PDF

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.