• Title/Summary/Keyword: formation dynamics

Search Result 466, Processing Time 0.029 seconds

Dimerization of Fibril-forming Segments of α-Synuclein

  • Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1845-1850
    • /
    • 2009
  • We have performed replica-exchange molecular dynamics (REMD) simulations on the dimer formation of fibrilforming segments of $\alpha$-Synuclein (residues 71 - 82) using implicit solvation models with two kinds of force fields- AMBER parm99SB and parm96. We observed spontaneous formation of dimers from the extensive simulations, demonstrating the self-aggregating and fibril forming properties of the peptides. Secondary structure profile and clustering analysis showed that dimers with antiparallel $\beta$-sheet conformations, stabilized by well-defined hydrogen boding, are major species corresponding to global free energy minimum. Parallel dimers with partial $\beta$-sheets are found to be off-pathway intermediates. The relative instability of the parallel arrangements is due to the repulsive interactions between bulky and polar side chains as well as weaker backbone hydrogen bonds.

Wind flow modification by a jet roof for mitigation of snow cornice formation

  • Kumar, Ganesh;Gairola, Ajay;Vaid, Aditya
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.115-126
    • /
    • 2021
  • The snow cornice mass on the formation zone had triggered avalanches which led to the loss of human life and property. Snow cornice is formed due to flow separation on the leeward side. Effect of lee slope is more prominent in the formation of snow cornices as compared to the windward slope. The analysis of wind flow pattern has been carried out to evaluate the performance of a jet roof. Computational Fluid Dynamics (CFD) analysis of wind flow over a 2D hill model was carried out using RNG based k-∈ turbulence models available in ANSYS Fluent. Effect of varying leeward hill slope (1:2 to 1:6) on flow separation for the given windward slope was observed and a critical slope of 1:4 was found at which the separation zone ceased to exist. The modification of wind flow over a hill due to the installation of jet roof was simulated. It was observed that jet roof had significantly modified the wind flow pattern around hill ridgeline and ultimately snow cornice formation had mitigated. The results of the wind flow pattern were validated with the wind data collected at the experimental site, Banihal Top (Jammu and Kashmir, India). The wind flow simulation over the hill and mitigation of cornice formation by the jet roof has been explained in the present paper.

Oxidative N-Debenzylation of N-Benzyl-N-substituted Benzylamines Catalyzed by Cytochrome P450

  • Kim, Sung-Soo;Lin, Gang;Yang, Ji-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.249-252
    • /
    • 2004
  • Cytochrome P450 (P450)/$O_2$/NADPH engender electron transfer reaction of N-benzyl-N-substituted benzylamines to yield corresponding radical cation 1 that is simultaneously converted into 2 and 3. Subsequently, expulsion of proton and hydroxylation yielding a-hydroxylamines are followed by formation of benzaldehydes and benzylamines.

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine (RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구)

  • Ahn, J.H.;Kim, H.M.;Shin, M.C.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine (RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구)

  • Kang, P.J.;Kim, H.M.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

Sampled-Data Control of Formation Flying using Optimal Linearization (최적 선형화 기반 디지털 재설계 기법을 이용한 편대 비행의 샘플치 제어)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • This paper proposes an efficient sampled-data controller design technique for formation flying. To deal with the nonlinearity in the formation flying dynamics and to obtain a linear, rather than affine, model, we utilize the optimal linearization technique. The digital redesign technique is then developed based on the optimal linear model and formulated in terms of linear matrix inequalities. Simulation results show the advantage of the proposed methodology over the conventional controller emulation technique.

Low mass star formation using the SPH simulation

  • Yun, Hye-Ryeon;Son, Jeong-Ju;Huvver, David Anthony
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.118-119
    • /
    • 2010
  • star formation is one of the hottest areas in astromy and increasing evidence is showing that star formation is actually a highly dynamic precess driven and strongly influenced by turbulent dynamics of molecular clouds. despite significant progress ir observation in process of star formation, earliest stage of star formation remains imcomplete. so, computer simulations are essential tool since the complex dynamics of star formation. We have performed simulation about the process of low mass star formation using the SPH simulation. we use the dragon-code, the most advanced star formation N-body Smoothed Particle Hydrodynamics (SPH) codes. We present how change the internal properties and how should evolve, while changing the values for Mass turbulence, central density and so on. ( mass range of values is 0.1 < M < $5\;M{\odot}$) based on this results, we discussed their circumstellar, characteristics they were borned and how they will evove while the Birth of low mass stars from interstellar cloud.

  • PDF

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

Design of Optimal Controllers for Spacecraft Formation Flying Based on the Decentralized Approach

  • Bae, Jong-Hee;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • Formation controller for multiple spacecrafts is designed based on a decentralized approach. The objective of the proposed controller is to make each spacecraft fly to the desired waypoints, while keeping the formation shape of multiple spacecrafts. To design the decentralized formation controller, the output feedback linearization technique using error functions for goal convergence and formation keeping is utilized for spacecraft dynamics. The primary contribution of this paper is to proposed optimal controller for formation flying based on the decentralized approach. To design the optimal controller, eigenvalue assignment technique is used. To verify the effectiveness of the proposed controller, numerical simulations are performed for three-dimensional waypoint-passing missions of multiple spacecrafts.