• Title/Summary/Keyword: formal proofs

Search Result 25, Processing Time 0.03 seconds

A study on mathematical justification activities in elementary school (초등학생의 수학적 정당화에 관한 연구)

  • 권성룡
    • Education of Primary School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.

  • PDF

A research on Mathematical Invention via Real Analysis Course in University (대학교의 해석학 강좌에서 학생들의 수학적 발명에 관한 연구)

  • Lee, Byung-Soo
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.471-487
    • /
    • 2008
  • Inventive mathematical thinking, original mathematical problem solving ability, mathematical invention and so on are core concepts, which must be emphasized in all branches of mathematical education. In particular, Polya(1981) insisted that inventive thinking must be emphasized in a suitable level of university mathematical courses. In this paper, the author considered two cases of inventive problem solving ability shown by his many students via real analysis courses. The first case is about the proof of the problem "what is the derived set of the integers Z?" Nearly all books on mathematical analysis sent the question without the proof but some books said that the answer is "empty". Only one book written by Noh, Y. S.(2006) showed the proof by using the definition of accumulation points. But the proof process has some mistakes. But our student Kang, D. S. showed the perfect proof by using The Completeness Axiom, which is very useful in mathematical analysis. The second case is to show the infinite countability of NxN, which is shown by informal proof in many mathematical analysis books with formal proofs. Some students who argued the informal proof as an unreasonable proof were asked to join with us in finding the one-to-one correspondences between NxN and N. Many students worked hard and find two singled-valued mappings and one set-valued mapping covering eight diagrams in the paper. The problems are not easy and the proofs are a little complicated. All the proofs shown in this paper are original and right, so the proofs are deserving of inventive mathematical thoughts, original mathematical problem solving abilities and mathematical inventions. From the inventive proofs of his students, the author confirmed that any students can develope their mathematical abilities by their professors' encouragements.

  • PDF

On the Didactical Meaning of Preformal Proofs (전형식적 증명의 교수학적 의미에 관한 고찰)

  • Hong Jin Kon;Kwon Seok Il
    • The Mathematical Education
    • /
    • v.43 no.4
    • /
    • pp.381-390
    • /
    • 2004
  • In this study, we conceptualized the ‘preformal proof’, which is a transitive level of proof from the experimental and inductive justification to the formalized mathematical proof. We investigated concrete features of the preformal proof in the historico-genetic and the didactical situations. The preformal proof can get the generality of the contents of proof, which makes a distinction from the experimental proof. And we can draw a distinction between the preformal and formal proof, in point that the preformal proof heads for the reality-oriented objects and does not use the formal language.

  • PDF

Frege's influence on the modern practice of doing mathematics (현대수학의 정형화에 대한 프레게의 영향)

  • Lee, Gyesik
    • Korean Journal of Logic
    • /
    • v.20 no.1
    • /
    • pp.97-112
    • /
    • 2017
  • We discuss Frege's influence on the modern practice of doing mathematical proofs. We start with explaining Frege's notion of variables. We also talk of the variable binding issue and show how successfully his idea on this point has been applied in the field of doing mathematics based on a computer software.

  • PDF

AN ALGORITHM FOR GENERATING MINIMAL CUTSETS OF UNDIRECTED GRAPHS

  • Shin, Yong-Yeonp;Koh, Jai-Sang
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.771-784
    • /
    • 1998
  • In this paper we propose an algorithm for generating minimal cutsets of undirected graphs. The algorithm is based on a blocking mechanism for generating every minimal cutest ex-actly once. The algorithm has an advantage of not requiring any preliminary steps to find minimal cutsets. The algorithm generates minimal cutsets at O(e.n) {where e,n = number of (edges, vertices) in the graph} computational effort per cutset. Formal proofs of the algorithm are presented.

Descartes' proofs for the existence of God (데카르트 신 존재증명의 의의)

  • Kim, Wan-jong
    • Journal of Korean Philosophical Society
    • /
    • v.141
    • /
    • pp.1-42
    • /
    • 2017
  • This paper's purpose is to seek to grasp how Descartes demonstrates proofs of God's existence on the basis of his works especially Meditations. To consider these points, I shall explore first, second, third proofs that are present in his works, and contents related to God. Descartes argues that there is idea of God within me, but it is God, which is first proof. On the basis of this fact, Descartes shows only God is the cause of thinking self who has idea of God(second proof), both of them are called Cosmological argument. To investigate this, at first he states that representative reality that is different from formal reality sets a kind of hierarchy, the degree of this reality is equally applied to cause and effect, consequently to the cause of my idea or existence(God). From Meditation V, third proof which is called Ontological argument, Descartes examined a supremely perfect God can't be separated from God's existence(perfection) just as surly as the certainty of any shape or number, for example triangle, namely it is quite evident that God's existence includes his essence. Through these processes I shall examine following points: the way of having Descartes' proofs of God's existence itself is not only exposed, God's existence who guarantees cogito ergo sum which is never doubted, despite doubting all things that is outside, is but also postulated; Proofs for the existence of God are an ultimate source of ensuring the clear and distinct perception of human reason, Descartes uses reason suitable for non-christians instead of faith suitable for Christians for these methods, which are similarities with the traditional views on the one hand, but nevertheless there are some of discontinuities establishing authority or power of the first philosophical principle to which God is subjected, on the other.

A study of the types of students' justification and the use of dynamic software (학생들의 정당화 유형과 탐구형 소프트웨어의 활용에 관한 연구)

  • 류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.245-261
    • /
    • 1999
  • Proof is an essential characteristic of mathematics and as such should be a key component in mathematics education. But, teaching proof in school mathematics have been unsuccessful for many students. The traditional approach to proofs stresses formal logic and rigorous proof. Thus, most students have difficulties of the concept of proof and students' experiences with proof do not seem meaningful to them. However, different views of proof were asserted in the reassessment of the foundations of mathematics and the nature of mathematical truth. These different views of justification need to be reflected in demonstrative geometry classes. The purpose of this study is to characterize the types of students' justification in demonstrative geometry classes taught using dynamic software. The types of justification can be organized into three categories : empirical justification, deductive justification, and authoritarian justification. Empirical justification are based on evidence from examples, whereas deductive justification are based logical reasoning. If we assume that a strong understanding of demonstrative geometry is shown when empirical justification and deductive justification coexist and benefit from each other, then students' justification should not only some empirical basis but also use chains of deductive reasoning. Thus, interaction between empirical and deductive justification is important. Dynamic geometry software can be used to design the approach to justification that can be successful in moving students toward meaningful justification of ideas. Interactive geometry software can connect visual and empirical justification to higher levels of geometric justification with logical arguments in formal proof.

  • PDF

Neuro-controller for a XY Positioning Table

  • Jang, Jun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.581-586
    • /
    • 2003
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neurocontroller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

  • PDF

FL Deadzone Compensation of a Mobile robot (이동로봇의 퍼지 데드존 보상)

  • Jang, Jun Oh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.191-202
    • /
    • 2013
  • A control structure that makes possible the integration of a kinematic controller and a fuzzy logic (FL) deadzone compensator for mobile robots is presented. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a mobile robot to show its efficacy.

Verifiable Outsourced Ciphertext-Policy Attribute-Based Encryption for Mobile Cloud Computing

  • Zhao, Zhiyuan;Wang, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3254-3272
    • /
    • 2017
  • With the development of wireless access technologies and the popularity of mobile intelligent terminals, cloud computing is expected to expand to mobile environments. Attribute-based encryption, widely applied in cloud computing, incurs massive computational cost during the encryption and decryption phases. The computational cost grows with the complexity of the access policy. This disadvantage becomes more serious for mobile devices because they have limited resources. To address this problem, we present an efficient verifiable outsourced scheme based on the bilinear group of prime order. The scheme is called the verifiable outsourced computation ciphertext-policy attribute-based encryption scheme (VOC-CP-ABE), and it provides a way to outsource intensive computing tasks during encryption and decryption phases to CSP without revealing the private information and leaves only marginal computation to the user. At the same time, the outsourced computation can be verified by two hash functions. Then, the formal security proofs of its (selective) CPA security and verifiability are provided. Finally, we discuss the performance of the proposed scheme with comparisons to several related works.