DOI QR코드

DOI QR Code

FL Deadzone Compensation of a Mobile robot

이동로봇의 퍼지 데드존 보상

  • 장준오 (위덕대학교 소프트웨어공학과)
  • Received : 2012.12.22
  • Published : 2013.04.25

Abstract

A control structure that makes possible the integration of a kinematic controller and a fuzzy logic (FL) deadzone compensator for mobile robots is presented. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a mobile robot to show its efficacy.

이동로봇의 역학 제어기와 퍼지 데드존 보상기가 결합된 제어구조를 제안한다. 데드존 보상이 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 퍼지논리 파라미터 동조알고리듬과 안정도 증명을 제시한다. 퍼지논리 데드존 보상기를 이동로봇에 시뮬레이션 및 실험함으로써 데드존의 해로운 영향을 줄이는 효과를 보여준다.

Keywords

References

  1. A. D. Luca and G. Oriolo, "Modeling and control of nonholonomic mechanical systems," in Kinematics and Dynamics of Multi-body Systems, J. Angeles and A. Kecskemethy, Eds. New York; Springer-Verlag, 1995, vol. 360, ch. 7, pp. 277-342.
  2. 이종호, 김동원,"퍼지 시스템과 포텐셜 필드를 이용 한 이동로봇의 충돌회피 최적 경로," 대한전자공학회 논문지, 제47권 IE편, 제2호, pp. 66-72, 2010.6
  3. 이형직, 정슬, "두 바퀴로 구동하는 이동로봇 시스템의 균형제어," 대한전자공학회 논문지, 제 48권 SC 편, 제 6호, pp.1-7, 2011. 11.
  4. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noquchi, "A stable tracking control ethod for autonomus mobile robot," in Proc. IEEE Int. Conf. Robot. Automat., Sacramento, vol. 1, Cincinati, OH, May 1990, pp. 384-389.
  5. Z. Ping and H. Nimejer, "Tracking control of mobile robots: A case study in backstepping," Automatica, vol. 33, no. 7, pp. 1393-1399, 1997. https://doi.org/10.1016/S0005-1098(97)00055-1
  6. G. Oriolo, A. De Luca, and M. Vendittelli, "WMR control via dynamic feedback linearization: design, implementation and experimental validation," IEEE Trans. Control Systems Technology, vol. 10, no. 6, pp. 835-852, Nov. 2002. https://doi.org/10.1109/TCST.2002.804116
  7. Z. Li, S. S. Ge, and A. Ming, "Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators," IEEE Trans. Systems, Man, and Cybernetics B, vol. 37, no. 3, pp. 607-616, June 2007. https://doi.org/10.1109/TSMCB.2006.888661
  8. R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using neural networks," IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589-600, July 1998. https://doi.org/10.1109/72.701173
  9. C. D. Sousa, J. E. M. Hemerly, and R. K. H. Galvao, "Adaptive control for mobile robot using wavelet networks," IEEE Trans. Systems, Man, and Cybernetics B, vol. 32, no. 4, pp. 493-504, Aug. 2002.
  10. T. Das and I. Narayan, "Design and implementation of an adaptive fuzzy logic based controller for wheeled mobile robots," IEEE Trans. Control Systems Technology, vol. 14, no. 3, pp. 501-510, May 2006. https://doi.org/10.1109/TCST.2006.872536
  11. G. Antonelli, S. Chiaverni, and G. Fusco, "A fuzzy logic based approach for mobile robot path tracking," IEEE Trans. Fuzzy Systems, vol. 15, no. 2, pp. 211-221, April 2007. https://doi.org/10.1109/TFUZZ.2006.879998
  12. R. C. Luo and Kuo L. Su, "Multilevel multisensor based intelligent recharging system for mobile robot," IEEE Trans. Ind. Electronics, vol. 55, no. 1, pp. 270-279, Jan. 2008. https://doi.org/10.1109/TIE.2007.903989
  13. I. Baturone, F. J. Moreno-Velo, V. Blanco, and J. Ferruz, "Design of embedded DSP-based fuzzy controllers for autonomous mobile robots," IEEE Trans. Ind. Electronics, vol. 55, no. 2, pp. 928-936, Feb. 2008. https://doi.org/10.1109/TIE.2007.896547
  14. J. Barraquand and J. C. Latombe, "Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles," in Proc. IEEE Int. Conf. Robot. Automat., Sacramento, CA, 1991, pp. 2328-2335.
  15. G. Campion, G. Bastin, and B. D. A. Novel, "Structural properties and classification of kinematic and dynamic models of wheeled mobile robots," IEEE Tans. Robot. Automat., vol. 12,pp. 47-62, Feb. 1996. https://doi.org/10.1109/70.481750
  16. M. Aicardi, G. Casalino, A. Bichhi, and A. Balestrino, "Closed loop steering of unicycle-like vehicles via Lyapunov techniques," IEEE Robot. Automat. Mag., vol. 2, pp. 27-35, Mar. 1995. https://doi.org/10.1109/100.388294
  17. D. A. Recker, P. V. Kokotovic, D. Rhode, and J. Winkelman,"Adaptive nonlinear control of systems containing a deadzone," in Proc. IEEE Conf. Decision and Control, Brighton, UK, 1991, pp. 2111-2115.
  18. G. Tao and P. V. Kokotovic, "Adaptive control of plants with unknown dead-zones," in Proc. American Control Conf., Chicago, IL, 1992, pp. 2710-2714.
  19. J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ:Prentice-Hall, 1991.
  20. J. O. Jang, H. T. Chung, and G. J. Jeon, "Neuro-fuzzy controller for a XY positioning table," Intelligent Automation and Soft Computing, vol. 13, no. 2, pp.153-169, April 2007. https://doi.org/10.1080/10798587.2007.10642957
  21. J. O Jang, "Adaptive neuro-fuzzy network control for a mobile robot," J. Intelligent & Robotic Systems, vol. 62, no. 3, pp. 567-586, June 2011. https://doi.org/10.1007/s10846-010-9453-4