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1. INTRODUCTION 

 
Very accurate control is required in mechanical devices 

such as xy  positioning tables, overhead crane mechanisms, 

robot manipulators, etc. For many of these devices, the 
performance is limited by deadzone, friction, and backlash 
[1-3]. Precise positioning, in particular, control of very small 
displacement is an especially difficult problem for micro 
positioning devices. Due to the nonanalytic nature of the 
system nonlinearities and the fact that their exact parameters 
are unknown such systems present a challenge for the control 
design engineer. A number of control strategies have been 
developed to overcome the problems caused by the 
nonlinearities effects. Lee and Tomizuka [4] proposed the 
robust motion controller design for high accuracy positioning 
systems. Cross-coupled control of biaxial feed drive 
servomechanisms is considered by Srinivansan and Kulkarni 
[5]. Adaptive high-precision control of positioning tables 
including theory and experiment is appeared in [6].  

Recently, advances in the area of artificial neural networks 
have provided the potential for new approaches to the control 
of nonlinear systems through learning process. Artificial 
neural networks provide a distinctive computational paradigm 
by exploiting the massively parallel processing performed in 
their elementary processing elements called neurons. Relevant 
features of the NN in the control context include their ability 
to model arbitrary differential nonlinear functions, and their 
intrinsic on-line adaptation and learning capabilities. For 
example, Narendra and Parthasarathy [7] have shown by the 
simulations that the NN can be used to effectively for the 
identification and control of nonlinear dynamic processes.  
Lightbody and Irwin [8] proposed a direct model reference 
adaptive control structure using a linear controller and an NN 
in parallel in a chemical process and a missile control system. 
In robotics, Kawato et al. [9] used an hierarchical NN model 
as add-on component to the conventional linear controller in 
order to control the movement of a robot. Lewis et al. [10] 
proposed a multilayer neural-net robot controller with 
guaranteed tracking performance. Cui and Shin [11] proposed 
a direct control and coordination method using NN for a 
multiple robot system.  

In this paper, we present the neuro-controller for a XY 
positioning table. The proposed neuro-controller is composed 
of a linear controller and an NN to compensate for system  

 
nonlinearities. A rigorous design procedure with proofs is 
given that results in a PD tracking loop with an NN in the 
feedforward loop. We derive a practical bound on the tracking 
error from the analysis of the tracking error dynamics. The 
neuro-controller is implemented on a XY positioning table to 
show its efficacy in canceling the deleterious effects of system 
nonlinearities. 

 
2. XY POSITIONING TABLE 

 
The XY positioning table is constructed by mechanical 

connection of the servo system for each axis and these servo 
systems are controlled for each axis, independently [12]. The 
XY positioning table is depicted in Fig. 1. It is shown that the 
dynamics of a XY table can be written by 

jdjfjj TTTqBqJ =+++ ��� , 2,1=j        (1) 

where )(tq  is the position, J  is the inertia, B  is the 

damping, fT  is the nonlinear friction, dT  is the load 

disturbance, and T  is system input. The nonlinear friction 
[13,14] is described by  
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with constants 0>iα , 2,1,0=i . No assumption are made 

on the shape of the second nonlinear component 
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except that it vanishes beyond some 

critical relative velocity )(tq jc . A model-free identifier such 

as an NN can be designed to capture such a characteristic, as 
described in the following.  

 
3. NEURO CONTROLLER OF A XY 

POSITIONING TABLE 
We derive the neuro-controller for a XY positioning table 

so that the tracking error is guaranteed small and all internal 
state are bound. The each-axis dynamics of the XY 
positioning table may be rewritten from (1) by 

TTTqBqJ df =+++ ���              (3) 

where )(tq  is the position, J is the inertia, B  is the 

damping, fT  is the nonlinear friction, dT  is the bounded  
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Fig. 1. XY positioning table (a) layout and (b) control 

structure.  
 
 

unknown disturbance, and T  is the system input. It is 
assumed that ddT τ<|| , with dτ , a known positive constant. 

Given the desired trajectory dq , the tracking error is 

expressed by qqe d −=  and the filtered tracking error by 

eer Λ+= �                      (4) 
with Λ a positive definite design parameter. Then (3) is a 
stable system so that )(te  is bounded as long as the 

controller guarantees that the filtered error )(tr is bounded.  

  Differentiating (4) and using (3), the dynamics of the 
system may be written in terms of the filtered tracking error as  

dTqfTBrrJ ++−−= )(�            (5) 

where the nonlinear plant function is defined as:  

fdd TeqBeqJxf +Λ++Λ+= )()()( ���� .    (6) 

Vector x  contains all the time signals needed to compute 

)(xf , and may be defined for instance as 

T
dd qqeex ][ ����= . It is noted that the function )(xf  

contains all the potentially unknown function, except for J , 
B  appearing in (5)- these latter terms cancel out in the 
stability proof. 
  Define an neuro-controller for each-axis as  

221 jjjfjjj TrKTTT +=+= , 2,1=j      (7) 

with the linear controller gain 0>jfK  and 2jT , an 

estimate of f , will be provided by some means not yet 

disclosed. The control structure implied by this scheme is 
shown in Fig. 2.  
  Substituting (7) into (5) yields the closed loop error 
dynamics 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Proposed neuro-control structure of XY positioning 
table. 

 

jdjjjfjj TfrBKrJ +++−=
~

)(� ,  2,1=j    (8) 

where the nonlinear functional estimation error jf
~

 is given 

by 2
~

jjj Tff −= . 

Equation (8) is the error system wherein the tracking 
error is driven by the functional estimation error. In the 
remainder of the paper we shall use Eq. (8) to focus on 
selecting an NN training algorithm that the NN approximates 
the nonlinear plant function jf .  

  A three layer NN in Fig. 3 has a network output given by  
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with notation )(⋅σ , the activation function, lmv , the inter- 

connection weights from first to second layer, mjw , the inter- 

connection weights from second to third layer, The NN 
equation may be conveiently expressed in a vector format by 

defining TwwwW ],,,[ˆ
4,12,11,1 �= , 

T)](,),(),([)( 421 ⋅⋅⋅=⋅ σσσσ � , )()( ⋅=⋅ σσ i , and a matrix 

format defining ][ˆ
lm

T VV =  Then,  

)ˆ(ˆ
2 xVWT TT

j σ=    2,1=j .          (10) 

  A general function, f , can be modeled by an NN as:  

εσ += )( xVWf TT              (11) 

where W  and V  are constant ideal weight of the current 

weight Ŵ  and V̂  so that ε  is bounded by a known 

contant Nε , and ε  is reconstruction error due to the NN 

structure [15, 16]. For practical situations, we assume that the 
ideal parameters are bounded by known positive values so that 

MWW <|||| , MVV <||||  where |||| ⋅  is a norm. Define the 

parameter deviation or the parameter estimation error as:  

WWW ˆ~ −= , VVV ˆ~ −=              (12) 
and the second layer output error for a given x  as: 

)ˆ()(ˆ~ xVxV TT σσσσσ −=−= .          (13) 
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The Taylor series expansion of the second layer output for a 
given x  may be written as:  
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with zzdz
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)ˆ( =≡ σσ� , and )(⋅O , sum of higher order 

terms. Denoting )ˆ(ˆ xV Tσσ �
� = , we have   
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� .  (15) 

  Now, define the NN functional estimate of (11) by:  

)ˆ(ˆ
2 xVWT TT

j σ= ,    2,1=j       (16) 

with Ŵ , V̂  the current estimated values of the ideal 
weights W , V  as provided by the training algorithm 
subsequently to be disscussed. 
  For one axis dynamics, select a control input torque using 
(7) and (16) as:  

)ˆ(ˆ xVWrKT TT
f σ+= .             (17) 

Using (11) and (17), the closed loop error dynamics (8) 
become: 

d
TTTT

f TxVWxVWrBKrJ ++−++−= εσσ )ˆ(ˆ)ˆ()(� .   

 (18) 

Adding and subtracting σ̂TW  yields: 

d
TT

f TWWrBKrJ ++−++−= εσσ ~ˆˆ
~

)(� .    (19) 

Adding and subtracting again σ~ˆ TW  yields: 

d
TT

f TWWWrBKrJ ++++++−= εσσσ ~~~ˆˆ
~

)(� .  (20) 

Using the Taylor series approximation for σ~ , the closed loop 
error system becomes 

d
TT

f TxVWWrBKrJ ++++++−= εδσσ ~
ˆˆˆ

~
)( �

�   (21) 

where the disturbance δ  is 

)
~

(
~ˆ~

xVOWxVW TTTT += σδ � .            (22) 

The disturbance term, δ , is bounded by a positive constant 

Nδ , i.e., Nδδ <|| . It is important to note that the NN 

reconstruction error ε , the plant disturbance dT , and the 

disturbance term δ  in the taylor series expansion of f  all 

have exactly the same influence as disturbance in the error 
system.  
  For the NN training algorithm to improve the tracking 

performance of the closed loop system it is required to 
demonstrate that the tracking error, r  is suitably small, a 
bound on the tracking error is derived by the following 
theorem. 

 
Theorem 1: Let the reference signal be bounded. Take the 

control input for (3) as (17). Let an NN weights training rule 
be provided by  

TrW σ̂ˆ =�                     (23) 

TrWxV )ˆˆ(ˆ σ�� =                  (24) 

Then, the tracking error r  evolves within a practical bound, 

BK
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Proof: Define a Lyapnov function candidate for the error 
dynamics (8) as 
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where )(⋅tr  is trace.  Differentiating Eq. (26) yields 
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Since WW
�� ˆ~ −=  with W  constant (and similily for V

�~
), 

the tuning rules (23)-(24) and the assumption 0|| =J�  give 

)()( 2
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Thus L�  is negative as long as the term in the brace is 
positive, which implies 

BK
r

f

dNN

+
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>
τεδ

|| .                 (31)  

According to the Lyapunov theorem, the tracking error 
decrease as long long as the tracking error is bigger than the 
right hand side of Eq. (31). This implies Eq. (32) gives a 
practical bound on the tracking error  

BK
r

f

dNN

+
++

≤
τεδ

|| .                 (32)   

The NN reconstruction error ε , the bounded disturbance 

dT , and the higher order Taylor series terms δ  increase the 

bound on || r . However, a small tracking error bound may be 

achieved by reducing Nδ  by tuning the NN and by 

decreasing the reconstruction error ε  by properly selecting 
the structure of the NN. Note that since the linear controller 
gain fK  is determined according to the design of linear 

controller, fK , cannot be increased arbitarily. However, 

large fK  may decrease the tracking error bound as long as 

the linear controller maintains the stability of control system. 
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Fig. 4. Experimental setup. 
 
 

 
4. SIMULATION AND EXPERIMENTAL 

RESULTS 
 

In this section, we illustrate the effectiveness of a 
proposed neuro-controller by computer simulations and 
experiments on a XY positioning table[17]. The experimental 
setup is shown in Fig. 4. The Y-axis of the XY table was 
placed on the X-axis.  The actuators of the XY table were 
two dc servo motors. Each motor was controlled indepen- 
dently by the same servo controller. Ball screws were 
connected to the motors and let the table move, and an IBM 
PC was connected to the XY table through the A/D and D/A 
converters. The main control algorithm is implemented at a 
100 Hz sampling rate via an IBM PC with an 486DX-66 micro 
processor.  The proposed algorithm is written in C language. 

The parameters of the XY table are estimated as  

][0143.0 2
1 mKgJ ⋅=  and ][945.01 mNB ⋅= , 

][0135.0 2
2 mKgJ ⋅=  and ][927.02 mNB ⋅=    (33) 

for the X- and Y-axis, respectively. The allowable moving 
area of the XY table is 25[cm].  

We simulate the XY positioning table with nonlinear 
friction nonlinearity using PD controller. The desired 
trajectory is selected by    
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The friction set at 06.00 =α , 01.01 =α , and 0.32 =α  

for X-axis, and 062.00 =α , 011.01 =α , and 0.32 =α  

for Y-axis. The gains of PD controllers are chosen as 
0.3=fK  and 4.0=Λ .  As shown in Fig. 5(a), the 

performance is degraded by friction nonlinearities(locus i). 
Therefore the neuro-controller was trained as described in  
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(b) 
Fig. 5. Simulation results for the circle (a) locus and (b) 
trajectory. (dotted line: desired, i) without compensation, ii) 
with compensation) 
 
 
Section 3 in order to compensate for the effects of the 
nonlinearities. The input vector x  can be taken as 

T
jdjjj kqkqkex )]()),(sgn(),([ �= , The sgnum function 

)sgn(⋅  is needed for Coulomb friction terms.  The 

simulation result of the XY table with the neuro-controller is 
also shown in Figure(locus ii).  The trajectories of each axis 
are included in Fig. 5(b). Experimental results are shown in 
Fig. 6, which show similar phenomena to those found in 
simulation. The proposed method exhibits an improvement in 
its locus and trajectory response compared with the PD 
controller. 

We also applied it to modified circle and described as  
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i) →                       ii) →  
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ii) →   ← i) 
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(b) 

Fig. 6. Experimental results for the circle (a) locus and (b) 
trajectory. (dotted line: desired, i) without compensation, 
ii) with compensation) 
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Experimental results are given in Fig. 7. The locus of the PD 
controller without compensation is different from the desired 
locus because of the friction effects. However, the locus of the 
proposed method is almost same as the desired locus, which 
means the proposed method compensates for friction effects. 
The result of the proposed method is better than that of the PD 
controller without compensation from the point of view of 
closing the desired locus.   

 

5.  CONCLUSIONS 

The neuro-control scheme has been proposed for a XY 
positioning table. The neuro-controller includes a PD tracking  
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Fig. 7. Experimental results for the modified circle (a) locus 
and (b) trajectory. (dotted line: desired, i) without 
compensation, ii) with compensation) 

 
 

loop for stabilization of fast dynamics and an NN loop used to 
compensate for the effects of the system nonlinrarities. Using 
nonlinear stability techniques, the bound on tracking error is 
derived from the tracking error dynamics. Implementation on 
an actual XY positioning table shows the efficacy of the 
proposed technique.  
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