• Title/Summary/Keyword: forest ecosystem

Search Result 911, Processing Time 0.022 seconds

Classification of Degraded Peat Swamp Forest for Restoration Planning at Landscape Level Using Remote Sensing Technique

  • Hamzah, Khali Aziz;Idris, Azahan Shah;Parlan, Ismail
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Malaysia possesses about 1.56 million ha of Peat Swamp Forest (PSF). The PSF safeguard enormous biological diversity, while providing crucial benefits for the sustainable development of human communities. Numbers of threatened plant species are associated with the PSF, including the commercially important Gonystylus bancanus timber. To prevent significant losses of biodiversity, it is important to manage the PSF for both biological conservation and sustainable use. Equally important is to restore all degraded PSF in an attempt to ensure the PSF ecosystem is suitable for the vegetation to grow and rehabilitate back to the normal condition. Prior to plan any forest restoration program, there is a need to properly map the degraded PSF in order to estimate the forest conditions and determine the vegetations status. Most of the time this need to be done at a landscape level and requires a technology that can provide accurate, timely and reliable information for the planner to make decision. This paper describes a study using geospatial technology in combination with ground survey to classify the degraded PSF in South East Pahang Peat Swamp Forest (SEPPSF), Malaysia, into different degree of vegetation classes. With map accuracy of about 83%, the technique proved to be useful in delineating the different degree of PSF degradation from which the information can be used to properly plan forest restoration program in the area. The final output which is in the form of map can be used in developing a Restoration Master Plan for the degraded PSF areas.

Effects of Air Pollution and Acid Precipitation on Soil pH and Distribution of Elements in Forest Ecosystem (대기오염(大氣汚染) 및 산성우(酸性雨)가 삼림생태계(森林生態系)의 토양산도(土壤酸度) 및 양료분포(養料分布)에 미치는 영향(影響))

  • Lee, Soo Wook;Min, Ill Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.1
    • /
    • pp.11-25
    • /
    • 1989
  • Four regions have been selected and surveyed to investigate the effects of air pollution and acid deposition on forest ecosystem. They were Seoul as urban region, Yeochon and Ulsan as industrialized region, and Kangwondo as uncontaminated region. Soil pH and the distribution of elements were analyzed in process of time for three years as well as by distance from pollution sources. In general, forest soils acidified in process of time from pollution sources to suburban areas. Hydrogen ion concentration in forest soils increased in 1988 as much as 60% of that in previous year. Average soil pH values in coniferous forest were 4.45 in Seoul, 4.54 in Yeochon, 4.81 in Ulsan, and 6.03 in Kangwondo. Forest soil pH increased with the distance from pollution sources to suburban areas at constant rate within short ranges (up to 30 km) and at decreasing rate within long ranges (up to 200 km). On the contrary, sulfur content in soils decreased every year except in Yeochon region. Base saturation of forest soils in polluted regions were all below 20% level compared with 70% in Kangwondo region. Active aluminum content in soils increased with the soil acidification at the highest rate in Yeochon, and the next in Ulsan and Seoul. Heavy metal content such as copper and zinc in tree tissues were the lowest in Kangwondo region, and the next in Yeochon, Seoul and Ulsan.

  • PDF

A Basic Study for the Long Term Strategy for Protecting Ecosystems in National Parks - A Survey on the Perceptions of Visitors to Soraksan National Park - (국립공원(國立公園) 생태계(生態界) 보호(保護) 장기전략(長期戰略)을 위한 기초연구(基礎硏究) - 설악산(雪嶽山) 국립공원(國立公園)에 대한 방문객(訪問客) 인식(認識) 조사(調査) -)

  • Youn, Youngil
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.299-308
    • /
    • 1999
  • How the society perceives National Park plays the most important role to achieve the goal for the National Park, which is to protect the ecosystems in the park. The survey for the visitors to Soraksan National Park was conducted to search for the answer to the question. As a result of the analysis based upon the perception types derived from the survey and factors affecting those types, the National Park can be explained by emotionally oriented type(scenic beauty), culturally oriented type, recreation oriented type, and economically oriented type. The first three types are strongly rooted in traditional culture, whereas the fourth type always conflicts with the goal of ecosystem protection. Korea has a long way to go to be familiarized with both the concept of ecosystem protection required by IUCN(The World Conservation Union) and the environmental ethics approach popularly promoted in the western world. The long term strategy for the protection of natural ecosystem should be approached in a manner that the traditional culture can be integrated into all aspects of park management.

  • PDF

Effect of Earthworms on Collembola Abundance in Temperate Forest Soil Ecosystem (온대 숲 토양 생태계에서 지렁이가 톡토기류 개체수에 미치는 영향)

  • Lee, Ju-Hyung;Park, Ji-Hyun;Yoo, Ji-Yeon;Han, Su-Hyun;Nam, Bo-Eun;Kim, Jae-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.97-106
    • /
    • 2010
  • Earthworm, a prominent ecosystem engineer within many terrestrial ecosystems, can exert profound influences on various abiotic/biotic environments through bioturbation processes such as burrowing, casting and mixing of litter and soil. In this study, we investigated how the presence or absence of earthworm (Oligochaeta) can alter the soil physico-chemical conditions and ultimately the distribution and abundance of Collembola which constitutes a large proportion of the soil fauna. During September 2010, soil organisms along with soil samples were collected from randomly installed 20 plots in Mt. Gwan-ak. We examined the differences in the abundance of Collembola among plot samples in respect to the presence/absence of earthworm and soil physico-chemical conditions (i.e., pH, $PO_4^{3-}$, $NO_3^{2-}$, organic matter (OM), electrical conductance and water content). Analysis of soil physico-chemical environment revealed a significantly higher organic matter content and electrical conductance in plots with earthworm compared to plots without earthworm. Abundance of Collembola were not only higher in plots with earthworm than in plots without earthworm, but were also positively correlated with availability of OM present in the environment. The results suggest that positive impacts of earthworm on the abundance of Collembola in this study may have been due to their ability to effectively modify soil physico-chemical conditions favored by Collembola. Such conspicuous influence of earthworm's activity on below-ground community suggests their potential significance in forest restoration or revegetation process.

Bioinvasion and Distribution Pattern of Verbesina alternifolia in Korea (외래잡초 나래가막사리(Verbesina alternifolia)의 생물학적 침입 및 분포유형)

  • Kil, Ji-Hyon;Lee, Chang-Woo;Kim, Young-Ha;Kim, Jong-Min;Hwang, Sun-Min
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • Wingstem, Verbesina alternifolia of North America origin, was introduced in 1981 into the Korea terrestrial ecosystem. It scattered in a number of places with limited population size in most cases. Its population has spread into the forest at the Chiaksan National Park and occupied the natural vegetation. Distributions of wingstem were the most popular along the 12 road sites, especially in Route 453, Seohwa-myeon, Inje-gun, Gangwon-do and in Route 31, Yeongyang-gun, Gyeongsangbuk-do with 60% coverage of wingstem. It was also distributed in the 5 forest sites and 5 riversides. Despite of its attractive yellow flower, it is recommended to limit cultivation in the nature reserve or other ecosystem of conservation value.

Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.155-162
    • /
    • 2018
  • Background: In ecosystem carbon cycle studies, distinguishing between $CO_2$ emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil's temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil's temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

Carbon balance and net ecosystem production in Quercus glauca forest, Jeju Island in South Korea

  • Jeong, Heon Mo;You, Young Han;Hong, Seungbum
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.250-258
    • /
    • 2022
  • Background: To assess the carbon sequestration capacity and net ecosystem productivity (NEP) of Quercus glauca forests, we analyzed the net primary productivity (NPP), carbon storage, and carbon emission of soil in a Q. glauca forest on Jeju Island (South Korea) from 2016 to 2018. Results: The average carbon stock in the above- and below-ground plant biomass was 223.7 Mg C ha-1, while the average amount of organic carbon fixed by photosynthesis was 9.8 Mg C ha-1 yr-1, and the average NPP was 9.6 Mg C ha-1 yr-1. Stems and branches contributed to the majority of the above- and below-ground standing biomass and NPP. The average heterotrophic carbon emission from the soil was 8.7 Mg C ha-1 yr-1, while the average NEP was 1.1 Mg C ha-1 yr-1. Although the carbon stock, carbon absorption, and soil respiration values were higher than those reported in other oak forests in the world, the NEP was similar or lower. Conclusions: These results indicator that Q. glauca forests perform the role of a large carbon sink through the CO2 absorption in the plants in terms of carbon balance. And it is judged to be helpful as data for assessment of carbon storage and flux in the forests and mitigation of elevated CO2 in the atmosphere.

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park;Seung Jin Joo;Jaseok Lee;Dongmin Seo;Hyun Seok Kim;Jihyeon Jeon;Chung Weon Yun;Jeong Eun Lee;Sei-Woong Choi;Jae-Young Lee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.264-271
    • /
    • 2023
  • Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

Evaluation of the Spatial Distribution of Water Yield Service based on Precipitation and Population (강수량 및 인구인자를 반영한 수원함양서비스의 공간분포 평가)

  • CHO, Heun-Woo;SONG, Chol-Ho;JEON, Seong-Woo;KIM, Joon-Soon;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.1-15
    • /
    • 2016
  • The study of ecosystem service assessment has been actively researched and developed from Millennium Ecosystem Assessment(MA) and The Economics of Ecosystems and Biodiversity(TEEB). However, current assessments are limited to monetary assessments of ecosystem function and do not account for the effects of environmental factors and socioeconomic status. This study proposes methods to evaluate ecosystem service based on environmental and socioeconomic factors. The study assesses water yield function through the water yield model in InVEST Tool, and evaluates the overall ecosystem service of water yield as reflected by the amount of precipitation and population of the area. Results show that a difference exists between spatial distributions of the ecosystem function of water yield derived from natural conditions such as land cover and soil, and the spatial distribution of the ecosystem service that accounts for climate and socioeconomic factors. The value of ecosystem service increases for an area of higher population and lower precipitation with similar water yield. Thus, the ecosystem service of water yield should be evaluated not only by the water yield function, but also by climate and socioeconomic factors. The evaluation process described for this study should also be applicable to the evaluation of ecological services in other sectors.

A Study on Vegetation Structure Changes between Natural land and Damaged land in Regional Ecological Network at Chungnam Province (충남 광역생태네트워크 자연녹지의 훼손지 식생구조 변화)

  • Song, Ju-Hyeon;Yun, Chung-Weon;Cho, Yong-Hyeon;Kang, Hee-Kyoung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.2
    • /
    • pp.13-35
    • /
    • 2017
  • This study was carried out to analyze vegetation structure and change of the disturbed area in forest ecosystem(FE), riparian ecosystem(RE) and coastal ecosystem(CE) related to Regional Ecological Network at Chungnam province through constancy and dominance analysis, species diversity index, similarity index and canonical correlation analysis. Data were collected from April to October in 2015. As a result of constancy and dominance analysis of forest disturbed area, non-effective species(NES) was 30 species(17.0%), exported species(ES) was 98 species(55.7%) and imported species(IS) was 48 species(27.3%) among the total 176 species, respectively. In riparian disturbed area with total 139 species, there were 16 NES(11.5%), 98 ES(70.5%) and 25 IS(18.0%) respectively. In coastal disturbed area with 140 species, there were 20 NES(14.3%), 88 ES(62.9%) and 32 IS(22.9%) respectively. In all types of disturbed areas, the ratio of ES was higher than IS. As a result of species diversity, species richness and shannon's diversity index of disturbed area decreased in all kinds of crown strata such as tree, subtree, shrub and herb layer compared to the control area. As a result of similarity index, that of each type between control site and disturbed site was 0.374 in FE, 0.329 in CE and 0.259 in RE in the order. As a result of the CCA analysis, the number of present species, vine plants ratio and exported species ratio in disturbed area of FE and RE were decreased, and the naturalized plant ratio, imported species ratio and herb ratio were increased. But environmental factors of CE were not shown any clear tendency. In conclusion, many species occupied in control site disappeared into the disturbed area, and the naturalized plants and herb species were abundantly imported in the area. Therefore, it was considered that this study could be applied to the development of long-term and short-term ecological restoration techniques in view of vegetation changes.