DOI QR코드

DOI QR Code

Carbon balance and net ecosystem production in Quercus glauca forest, Jeju Island in South Korea

  • Jeong, Heon Mo (Climate Change and Carbon Research Team, National Institute of Ecology) ;
  • You, Young Han (Department of Biology, Kongju National University) ;
  • Hong, Seungbum (Ecological Adaptation Research Team, National Institute of Ecology)
  • Received : 2022.05.04
  • Accepted : 2022.08.23
  • Published : 2022.09.30

Abstract

Background: To assess the carbon sequestration capacity and net ecosystem productivity (NEP) of Quercus glauca forests, we analyzed the net primary productivity (NPP), carbon storage, and carbon emission of soil in a Q. glauca forest on Jeju Island (South Korea) from 2016 to 2018. Results: The average carbon stock in the above- and below-ground plant biomass was 223.7 Mg C ha-1, while the average amount of organic carbon fixed by photosynthesis was 9.8 Mg C ha-1 yr-1, and the average NPP was 9.6 Mg C ha-1 yr-1. Stems and branches contributed to the majority of the above- and below-ground standing biomass and NPP. The average heterotrophic carbon emission from the soil was 8.7 Mg C ha-1 yr-1, while the average NEP was 1.1 Mg C ha-1 yr-1. Although the carbon stock, carbon absorption, and soil respiration values were higher than those reported in other oak forests in the world, the NEP was similar or lower. Conclusions: These results indicator that Q. glauca forests perform the role of a large carbon sink through the CO2 absorption in the plants in terms of carbon balance. And it is judged to be helpful as data for assessment of carbon storage and flux in the forests and mitigation of elevated CO2 in the atmosphere.

Keywords

Acknowledgement

This study was supported by a grant from the National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIE-B-2022-35).

References

  1. Anic M, Sever MGO, Alberti G, Balenovic I, Paladinic E, Peressotti A, et al. Eddy Covariance vs. biometric based estimates of net primary productivity of pedunculate oak (Quercus robur L.) forest in croatia during ten years. Forests. 2018;9(12):764. https://doi.org/10.3390/f9120764.
  2. Cai H, Di X, Chang SX, Wang C, Shi B, Geng P, et al. Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China. Can J For Res. 2016;46(2):143-51. https://doi.org/10.1139/cjfr-2015-0038.
  3. Chapin III FS, Eviner VT. Biogeochemical interactions governing terrestrial net primary production. In: Holland HD, Turekian KK, editors. Treatise on geochemistry. 2nd ed. Oxford: Elsevier; 2014. p. 189-216.
  4. Con TV, Thang NT, Ha DTT, Khiem CC, Quy TH, Lam VT, et al. Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. For Ecol Manag. 2013;310:213-8. https://doi.org/10.1016/j.foreco.2013.08.034.
  5. Davidson EA, Belk E, Boone RD. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol. 1998;4(2):217-27. https://doi.org/10.1046/j.1365-2486.1998.00128.x.
  6. Escarre A, Ferres L, Lopez R, Martin J, Roda F, Terrades J. Nutrient use strategy by evergreen-oak (Quercus ilex ssp. ilex) in NE Spain. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC, editors. Plant response to stress. Berlin: Springer; 1987. p. 429-35.
  7. Han BH, Kim JY, Choi IT, Lee KJ. Vegetation structure of evergreen broad-leaved forest in Dongbaekdongsan(Mt.), Jeju-Do, Korea. Korean J Environ Ecol. 2007;21(4):336-46.
  8. Han YS, Lee EP, Park JH, Lee SY, Lee SI, You YH. Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea. J Ecol Environ. 2018;42:8. https://doi.org/10.1186/s41610-018-0068-1.
  9. Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr. 1983;53(3):235-62. https://doi.org/10.2307/1942531.
  10. Houghton RA. Balancing the global carbon budget. Ann Rev Earth Planet Sci. 2007;35(1):313-47. https://doi.org/10.1146/annurev.earth.35.031306.140057.
  11. Inclan R, Uribe C, De La Torre D, Sanchez DM, Clavero MA, Fernandez AM, et al. Carbon dioxide fluxes across the Sierra de Guadarrama, Spain. Eur J Forest Res. 2010;129:93. https://doi.org/10.1007/s10342-008-0247-1.
  12. Jang RH, Jeong HM, Lee EP, Cho KT, You YH. Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla. J Ecol Environ. 2017;41:4. https://doi.org/10.1186/s41610-017-0023-6.
  13. Jang YC, Lee CW. Gotjawal forest in Jeju Island as an internationally important wetland. J Wetl Res. 2009;11(1):99-104.
  14. Jeong HM, Jang I, Hong S. Relationship between aboveground biomass and measures of structure and species diversity in Quercus mongolica-dominated forest, Mt. Jeombong. Korean J Environ Ecol. 2016;30(6):1022-31. https://doi.org/10.13047/KJEE.2016.30.6.1022.
  15. Jeong HM, Jang RH, Kim HR, You YH. Soil CO2 efflux in a warm-temperature and sub-alpine forest in Jeju, South Korea. J Ecol Environ. 2017;41:23. https://doi.org/10.1186/s41610-017-0041-4.
  16. Jeong HM, Kim HR, Cho KT, Lee SH, Han YS, You YH. Aboveground biomass estimation of Quercus glauca in evergreen forest, Kotzawal wetland, Cheju Island, Korea. J Wetl Res. 2014;16(2):245-50. https://doi.org/10.17663/JWR.2014.16.2.245.
  17. Kang SJ, Kwak AK. Comparisons of phytomass and productivity of watershed forest by allometry in South Han River. J Korea For Energy. 1998;17(1):8-22.
  18. Kim JS, Kim KY. [Woody plants of Korea peninsula]. Paju: Dolbegae; 2012. Korean.
  19. Kira T. Forest ecosystems of east and southeast Asia in a global perspective. Ecol Res. 1991;6:185-200. https://doi.org/10.1007/BF02347161.
  20. Koh GW, Park JB, Kang BR, Kim GP, Moon DC. Volcanism in Jeju Island. J Geol Soc Korea. 2013;49(2):209-30. https://doi.org/10.14770/jgsk.2013.49.2.209.
  21. Korea Forest Service. Basic forest statistics. Daejeon: Korea Forest Service; 2016.
  22. Kwak JI, Lee KJ, Han BH, Song JH, Jang JS. A study on the vegetation structure of evergreen broad-leaved forest Dongbaekdongsan(Mt.) in Jeju-do, Korea. Korean J Environ Ecol. 2013;27(2):241-52.
  23. Kwak YS, Hur YK, Song JH, Hwangbo JK. Quantification of atmospheric purification capacity by afforestation impact assessment of Kwangyang steel works. Res Inst Ind Sci Technol. 2004;18(4):334-40.
  24. Kwon KC, Lee DK. Above- and below-ground biomass and energy content of Quercus mongolica. J Korea For Energy. 2006;25(1):31-8.
  25. Kwon YA, Kwon WT, Boo KO, Choi YE. Future projections on subtropical climate regions over South Korea using SRES A1B data. J Korean Geogr Soc. 2007;42(3):355-67.
  26. Lee KJ, Mun HT. Organic carbon distribution in an oak forest. Korean J Ecol. 2005;28(5):265-70. https://doi.org/10.5141/JEFB.2005.28.5.265.
  27. Lee NY, Na KT, Noh JM, Shim S. Estimation of carbon storage in a forest ecosystem at Mudeungsan Mt. National Park, Korea. J Natl Park Res. 2015;6(1):1-6.
  28. Lee NY. Estimation of carbon storage in three cool-temperate broad-leaved deciduous forests at Jirisan National Park, Korea. Korean J Environ Biol. 2012a;30(2):121-7.
  29. Lee NY. Estimation of carbon storage in three cool-temperate broad-leaved deciduous forests at Seoraksan National Park, Korea. J Natl Park Res. 2012b;3(1-2):9-13.
  30. Luo Y, Zhou X. Soil respiration and the environment. Burlington: Elsevier; 2006.
  31. Mahdavi A, Saidi S, Iranmanesh Y, Naderi M. Biomass and carbon stocks in three types of Persian oak (Quercus brantii var. persica) of Zagros forests in a semi-arid area, Iran. J Arid Land. 2020;12:766-74. https://doi.org/10.1007/s40333-020-0027-4.
  32. Martinez-Sanchez JL, Tigar BJ, Camara L, Castillo O. Relationship between structural diversity and carbon stocks in humid and sub-humid tropical forest of Mexico. Ecoscience. 2015;22(2-4):125-31. https://doi.org/10.1080/11956860.2016.1169384.
  33. Menitsky YL. Oaks of Asia. Enfield: Science Publishers; 2009.
  34. Mun HT. Biomass estimation of shrub Lindera obtusiloba by allometry. J Ecol Environ. 2006;29(5):485-8. https://doi.org/10.5141/JEFB.2006.29.5.485.
  35. Nakane K, Kohno T, Horikoshi T. Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecol Res. 1996;11(2):111-9. https://doi.org/10.1007/BF02347678.
  36. Nakane K, Yamamoto M, Tsubota H. Estimation of root respiration rate in a mature forest ecosystem. Jpn J Ecol. 1983;33(4):397-408. https://doi.org/10.18960/seitai.33.4_397.
  37. Odum EP, Barrett GW. Fundamentals of ecology. 5th ed. Belmont: Thomson Brooks/Cole; 2005.
  38. Park IH. Structure and dynamics of Quercus acuta, Quercus acutissima and Pinus rigida forests in Wando Island. Korean J Environ Ecol. 2012;26(3):406-11.
  39. Park JB, Kang BR, Koh GW, Kim GP. Geological characteristics of Gotjawal terrain in Jeju Island. J Geol Soc Korea. 2014;50(3):431-40. https://doi.org/10.14770/jgsk.2014.50.3.431.
  40. Pyo JH, Kim SU, Mun HT. A study on the carbon budget in Pinus koreansis plantation. Korean J Ecol. 2003;26(3):129-34. https://doi.org/10.5141/JEFB.2003.26.3.129.
  41. Rodin LE, Bazilevich NI. Production and mineral cycling in terrestrial vegetation. Edinburgh: Oliver & Boyd; 1967.
  42. Shukla PR, Skea J, Slade R, van Diemen R, Haughey E, Malley J, et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva: IPCC; 2019.
  43. Son YM, Kim RH, Lee KH, Pyo JK, Kim SW, Hwang JS, et al. Carbon emission factors and biomass allometric equations by species in Korea. Seoul: Korea Forest Research Institute; 2014.
  44. Waikhom AC, Nath AJ, Yadava PS. Aboveground biomass and carbon stock in the largest sacred grove of Manipur, Northeast India. J For Res. 2018;29(2):425-8. https://doi.org/10.1007/s11676-017-0439-y.
  45. Wang B, Huang J, Yang X, Zhang B, Liu M. Estimation of biomass, net primary production and net ecosystem production of China's forests based on the 1999-2003 National Forest Inventory. Scand J For Res. 2010;25(6):544-53. https://doi.org/10.1080/02827581.2010.524891.
  46. Wang X, Nakatsubo T, Nakane K. Impacts of elevated CO2 and temperature on soil respiration in warm temperate evergreen Quercus glauca stands: an open-top chamber experiment. Ecol Res. 2012;27(3):595-602. https://doi.org/10.1007/s11284-012-0932-x.
  47. Whittaker RH, Likens GE. Primary production: the biosphere and man. Hum Ecol. 1973;1:357-69. https://doi.org/10.1007/BF01536732.
  48. Wilkinson M, Eaton EL, Broadmeadow MSJ, Morison JIL. Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England. Biogeosciences. 2012;9:5373-89. https://doi.org/10.5194/bg-9-5373-2012.
  49. WMO (World Meteorological Organization). WMO statement on the state of the global climate in 2019. Geneva: WMO; 2020.
  50. Won HY, Shin CH, Mun HT. Valuation of ecosystem services through organic carbon distribution and cycling in the Quercus mongolica forest at Mt. Worak National Park. J Wetl Res. 2014;16(3):315-25. https://doi.org/10.17663/JWR.2014.16.3.315.
  51. Yoo BO, Park JH, Park YB, Jung SY, Lee KS. Assessment of the distributional probability for evergreen broad-leaved forests (EBLFs) using a logistic regression model. J Korean Assoc Geogr Inf Stud. 2016;19(1):94-105. https://doi.org/10.11108/kagis.2016.19.1.094.