DOI QR코드

DOI QR Code

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park (Division of Climate Change Research, National Institute of Ecology) ;
  • Seung Jin Joo (Center for Atmospheric and Environmental Modeling (CAEM)) ;
  • Jaseok Lee (Department of Biological Science, Konkuk University) ;
  • Dongmin Seo (Department of Biological Science, Konkuk University) ;
  • Hyun Seok Kim (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Jihyeon Jeon (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Chung Weon Yun (Department of Forest Science, Kongju National University) ;
  • Jeong Eun Lee (Department of Forest Science, Kongju National University) ;
  • Sei-Woong Choi (Department of Environmental Education, Mokpo National University) ;
  • Jae-Young Lee (Division of Climate Change Research, National Institute of Ecology)
  • Received : 2023.10.27
  • Accepted : 2023.11.17
  • Published : 2023.12.31

Abstract

Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

Keywords

Acknowledgement

We would like to thank all researchers who carried out the field surveys of KLTER. We thank the MOE of the Republic of Korea for their assistance.

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259(4):660-84. https://doi.org/10.1016/j.foreco.2009.09.001. 
  2. Bhusal N, Adhikari A, Lee M, Han A, Han AR, Kim HS. Evaluation of growth responses of six gymnosperm species under long-term excessive irrigation and traits determining species resistance to waterlogging. Agric For Meteorol. 2022;323:109071. https://doi.org/10.1016/j.agrformet.2022.109071. 
  3. Bhusal N, Lee M, Han AR, Han A, Kim HS. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. For Ecol Manag. 2020;465:118099. https://doi.org/10.1016/j.foreco.2020.118099. 
  4. Bhusal N, Lee M, Lee H, Adhikari A, Han AR, Han A, et al. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci Total Environ. 2021; 779:146466. https://doi.org/10.1016/j.scitotenv.2021.146466. 
  5. Bonan GB. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens Environ. 1993;43(3): 303-14. https://doi.org/10.1016/0034-4257(93)90072-6. 
  6. Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature. 2010;464(7288):579-82. https://doi.org/10.1038/nature08930. 
  7. Chandrasekaran U, Byeon S, Kim K, Huh W, Han AR, Lee YS, et al. Influence of severe drought on mineral nutrient status in eastern white pine (Pinus strobus L). For Sci Technol. 2023;19(3):190-6. https://doi.org/10.1080/21580103.2023.2220584. 
  8. Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, et al. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). Front Plant Sci. 2022;13:1030140. https://doi.org/10.3389/fpls.2022.1030140. 
  9. Choi SW, An JS, Lee JY, Koo KA. Spatial and temporal changes in moth assemblages along an altitudinal gradient, Jeju-do island. Sci Rep. 2022;12(1):20534. https://doi.org/10.1038/s41598-022-24600-z. 
  10. Cleverly J, Eamus D, Edwards W, Grant M, Grundy MJ, Held A, et al. TERN, Australia's land observatory: addressing the global challenge of forecasting ecosystem responses to climate variability and change. Environ Res Lett. 2019;14:095004. https://doi.org/10.1088/1748-9326/ab33cb. 
  11. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 2000;408(6809):184-7. https://doi.org/110.1038/35041539. 
  12. Finzi AC, Austin AT, Cleland EE, Frey SD, Houlton BZ, Wallenstein MD. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ. 2011;9(1):61-7. https://doi.org/10.1890/100001. 
  13. Jenkins JC, Birdsey RA, Pan Y. Biomass and NPP estimation for the Mid-Atlantic region (USA) using plot-level forest inventory data. Ecol Appl. 2001;11(4):1174-93. https://doi.org/10.1890/1051-0761(2001)011[1174:BANEFT]2.0.CO;2. 
  14. Joo GJ, You YH, Min BM, Lee JH, Kim ES. The first 10 years of KNLTER (2004-2013) final report. Incheon: National Institute of Environmental Research; 2013. (in Korean with English title) 
  15. Joo SJ, Park MS, Kim GS, Lee CS. CO2flux in a cool-temperate deciduous forest (Quercus mongolica) of Mt. Nam in Seoul, Korea. J Ecol Field Biol. 2011;34(1):95-106. https://doi.org/10.5141/JEFB.2011.012. 
  16. Kao RH, Gibson CM, Gallery RE, Meier CL, Barnett DT, Docherty KM, et al. NEON terrestrial field observations: designing continental-scale, standardized sampling. Ecosphere. 2012;3(12):115. https://doi.org/10.1890/ES12-00196.1. 
  17. Karan M, Liddell M, Prober SM, Arndt S, Beringer J, Boer M, et al. The Australian SuperSite Network: a continental, long-term terrestrial ecosystem observatory. Sci Total Environ. 2016;568:1263-74. https://doi.org/10.1016/j.scitotenv.2016.05.170. 
  18. Kim GS, Kim AR, Lim BS, Seol J, An JH, Lim CH, et al. Assessment of the carbon budget of local governments in South Korea. Atmosphere. 2022;13(2):342. https://doi.org/10.3390/atmos13020342. 
  19. Knapp AK, Conard SL, Blair JM. Determinants of soil CO2 flux from a sub-humid grassland: effect of fire and fire history. Ecol Appl. 1998;8(3):760-70. https://doi.org/10.1890/1051-0761(1998)008[0760:DOSCFF]2.0.CO;2. 
  20. Kwak DA, Lee WK, Cho HK, Lee SH, Son Y, Kafatos M, et al. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J Plant Res. 2010;123(4):421-32. https://doi.org/10.1007/s10265-010-0310-0. 
  21. Lamchin M, Lee WK, Jeon SW, Wang SW, Lim CH, Song C, et al. Longterm trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci Total Environ. 2018;618: 1089-95. https://doi.org/10.1016/j.scitotenv.2017.09.145. 
  22. Lee KJ, Won HY, Mun HT. Contribution of root respiration to soil respiration for Quercus acutissima forest. Korean J Environ Ecol. 2012; 26(5):780-6. 
  23. Likens GE, Bormann FH. Linkages between terrestrial and aquatic ecosystems. BioScience. 1974;24(8):447-56. https://doi.org/10.2307/1296852. 
  24. McCallum KP, Guerin GR, Breed MF, Lowe AJ. Climate change vulnerability assessment. Austral Ecol. 2014;39(1):17-28. https://doi.org/10.1111/aec.12041. 
  25. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, et al. European phenological response to climate change matches the warming pattern. Glob Chang Biol. 2006;12(10):1969-76. https://doi.org/10.1111/j.1365-2486.2006.01193.x. 
  26. Metzger S, Ayres E, Durden D, Florian C, Lee R, Lunch C, et al. From NEON field sites to data portal: a community resource for surface-atmosphere research comes online. Bull Am Meteorol Soc. 2019; 100(11):2305-25. https://doi.org/10.1175/BAMS-D-17-0307.1. 
  27. Min SK, Kwon WT, Park EH, Choi Y. Spatial and temporal comparisons of droughts over Korea with East Asia. Int J Climatol. 2003;23(2): 223-33. https://doi.org/10.1002/joc.872. 
  28. Musinsky J, Goulden T, Wirth G, Leisso N, Krause K, Haynes M, et al. Spanning scales: the airborne spatial and temporal sampling design of the National Ecological Observatory Network. Methods Ecol Evol. 2022;13(9):1866-84. https://doi.org/10.1111/2041-210X.13942. 
  29. Park BJ, Kim YH, Min SK, Kim MK, Choi Y, Boo KO, et al. Long-term warming trends in Korea and contribution of urbanization: an updated assessment. J Geophys Res: Atmos. 2017;122(20):10637-54. https://doi.org/10.1002/2017JD027167. 
  30. Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. 2006;37:637-69. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100/. 
  31. Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B. 1992;44(2):81-99. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x. 
  32. Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Chang Biol. 2005;11(7):1024-41. https://doi.org/10.1111/j.1365-2486.2005.00963.x. 
  33. Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7-20. https://doi.org/10.1023/A:1006247623877. 
  34. Singh BK. Climate change and human health: an environmental perspective. Clim Res. 2010;41(1):41-4. https://doi.org/10.3354/cr00839. 
  35. Yoo S, Kwak DA, Cui G, Lee WK, Kwak H, Ito A, et al. Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecol Res. 2013;28:1045-59. https://doi.org/10.1007/s11284-013-1085-2.