Effect of Earthworms on Collembola Abundance in Temperate Forest Soil Ecosystem

온대 숲 토양 생태계에서 지렁이가 톡토기류 개체수에 미치는 영향

  • Lee, Ju-Hyung (Department of Biology Education, Seoul National University) ;
  • Park, Ji-Hyun (Department of Biology Education, Seoul National University) ;
  • Yoo, Ji-Yeon (Department of Biology Education, Seoul National University) ;
  • Han, Su-Hyun (Department of Biology Education, Seoul National University) ;
  • Nam, Bo-Eun (Department of Biology Education, Seoul National University) ;
  • Kim, Jae-Geun (Department of Biology Education, Seoul National University)
  • Received : 2010.11.09
  • Accepted : 2010.12.05
  • Published : 2010.12.31

Abstract

Earthworm, a prominent ecosystem engineer within many terrestrial ecosystems, can exert profound influences on various abiotic/biotic environments through bioturbation processes such as burrowing, casting and mixing of litter and soil. In this study, we investigated how the presence or absence of earthworm (Oligochaeta) can alter the soil physico-chemical conditions and ultimately the distribution and abundance of Collembola which constitutes a large proportion of the soil fauna. During September 2010, soil organisms along with soil samples were collected from randomly installed 20 plots in Mt. Gwan-ak. We examined the differences in the abundance of Collembola among plot samples in respect to the presence/absence of earthworm and soil physico-chemical conditions (i.e., pH, $PO_4^{3-}$, $NO_3^{2-}$, organic matter (OM), electrical conductance and water content). Analysis of soil physico-chemical environment revealed a significantly higher organic matter content and electrical conductance in plots with earthworm compared to plots without earthworm. Abundance of Collembola were not only higher in plots with earthworm than in plots without earthworm, but were also positively correlated with availability of OM present in the environment. The results suggest that positive impacts of earthworm on the abundance of Collembola in this study may have been due to their ability to effectively modify soil physico-chemical conditions favored by Collembola. Such conspicuous influence of earthworm's activity on below-ground community suggests their potential significance in forest restoration or revegetation process.

Keywords

References

  1. 김인수.김성진.이지영.이주삼. 2005. 지렁이 분립이 엽채류의 생육에 미치는 영향. 한국유기농업학회지 13:413-422.
  2. 김재근.박정호.최병진.심재한.권기진.이보아.이양우.주은정. 2004. 생태조사방법론. 서울:보문당.
  3. 이병도.배윤환. 2004. 가금류와 지렁이를 이용한 음식물쓰레기 재활용 방법에 관한 연구. 유기성 자원학회지 12:91-100.
  4. 최성식. 1996. 토양동물학. 원광대학교출판국.
  5. 최훈근. 1991. 지렁이 양식을 이용한 슬러지 처리 최적조건에 관한 연구. 환경독성보건학회지 6:133-141.
  6. Bronstein, J. L. 1994. Conditional outcomes in mutualistic interactions. Trends. Ecol. Evol., 9:214-217. https://doi.org/10.1016/0169-5347(94)90246-1
  7. Brown, G. G. 1995. How do earthworms affect microfloral and faunal community diversity? Plant Soil, 170:209-231. https://doi.org/10.1007/BF02183068
  8. Buck, C., M. Langmaack and S. Schrader. 1999. Nutrient content of earthworm casts influenced by different mulch types. Eur. J. Soil Biol., 35:23-30. https://doi.org/10.1016/S1164-5563(99)00102-8
  9. Bundt, M., F. Widmer, M. Pesaro, J. Zeyer and P. Blaser. 2001. Preferential flow paths:biological 'hot spots' in soils. Soil Biol. Biochem., 33:729-738. https://doi.org/10.1016/S0038-0717(00)00218-2
  10. Burtelow, A. E., P. J. Bohlen and P. M. Groffman. 1998. Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl. Soil Ecol., 9:197-202. https://doi.org/10.1016/S0929-1393(98)00075-4
  11. Curry, J. P., and O. Schmidt. 2007. The feeding ecology of earthworms:a review. Pedobiologia, 50:463-477. https://doi.org/10.1016/j.pedobi.2006.09.001
  12. Daniel, O., and J. M. Anderson. 1992. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem., 24:465-470. https://doi.org/10.1016/0038-0717(92)90209-G
  13. Eisenhauer, N. 2010. The action of an animal ecosystem engineer:identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53:343-352. https://doi.org/10.1016/j.pedobi.2010.04.003
  14. Gutierrez, M., M. Ramajo, J. B. Jesus and D. J. Diaz. 2003. The effect of Hormogaster elisae (Hormogastridae) on the abundance of soil Collembola and Acari in laboratory cultures. Biol. Fertil. Soils, 37:231-236.
  15. Gutierrez, M., J. B. Jesus, D. Trigo, R. Fernandez and D. J. Diaz. 2009. The influence of Hormogaster elisae (Oligochaeta, Hormogastridae) on the colonization of defaunated soil by microarthropods in laboratory cultures. Pedobiologia, 52:163-170. https://doi.org/10.1016/j.pedobi.2008.08.001
  16. Hamilton, W. E., and D. Y. Sillman. 1989. Influence of earthworm middens on the distribution of soil microarthropods. Biol. Fertil. Soils, 8:279-284.
  17. Hasegawa, M. 2001. The relationship between the organic matter composition of a forest floor and the structure of a soil arthropod community. Eur. J. Soil Biol., 37:281-284. https://doi.org/10.1016/S1164-5563(01)01099-8
  18. Jones, C. G., J. H. Lawton and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos, 69:373-386. https://doi.org/10.2307/3545850
  19. Jones, C. G., J. H. Lawton and M. Shachak. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78:1946-1957. https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
  20. Jongerius, A. 1970. Some morphological aspects of regrouping phenomena in Dutch soils. Geoderma, 4:311-331.
  21. Karatayev, A. Y., L. E. Burlakova and D. K. Padilla. 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers (In Leppa‥koski, E., S. Gollasch and S. Olenin eds., "Invasive aquatic species of Europe-distribution, impacts and management"). Dordrecht:Kluwer Academic Publishers, pp.433-446.
  22. Lal, R. 1988. Effects of macrofauna on soil properties in tropical ecosystems. Agric. Ecosyst. Environ., 24:101-116. https://doi.org/10.1016/0167-8809(88)90059-X
  23. Lee, K. E. 1985. Earthworms:their ecology and relationships with soils and land use. New York:Academic Press.
  24. Lussenhop, J. 1992. Mechanisms of microarthropodmicrobial interactions in soil. Adv. Ecol. Res., 23:1-33. https://doi.org/10.1016/S0065-2504(08)60145-2
  25. Martin, A. 1991. Short-and long-term effects of the endogeic earthworm Millsonia anomala (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils, 11:234-238. https://doi.org/10.1007/BF00335774
  26. Martin, A., and J. C. Y. Marinissen. 1993. Biological and physico-chemical processes in excrements of soil animals. Geoderma, 56:331-347. https://doi.org/10.1016/0016-7061(93)90121-Z
  27. McLean, M. A., and D. Parkinson. 2000. Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol. Biochem., 32:351-360. https://doi.org/10.1016/S0038-0717(99)00161-3
  28. Moore, J. W. 2006. Animal ecosystem engineers in streams. BioScience, 56:237-246. https://doi.org/10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2
  29. Piearce, T. G. 1972. Acid intolerant and ubiquitous Lumbricidae in selected habitats in North Wales. J. Anim. Ecol., 41:397-410. https://doi.org/10.2307/3476
  30. Pulleman, M. M., and J. C. Y. Marinissen. 2004. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil. Geoderma, 120:273-282. https://doi.org/10.1016/j.geoderma.2003.09.009
  31. Rusek, J. 1998. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity Conserv., 7:1207-1219. https://doi.org/10.1023/A:1008887817883
  32. Salmon, S. 2004. The impact of earthworms on the abundance of Collembola:improvement of food resources or of habitat? Biol. Fertil. Soils, 40:323-333. https://doi.org/10.1007/s00374-004-0782-y
  33. Salmon, S., and J. F. Ponge. 1999. Distribution of Heteromurus nitidus (Hexapoda, Collembola) according to soil acidity:interactions with earthworms and predator pressure. Soil Biol. Biochem., 31:1161-1170. https://doi.org/10.1016/S0038-0717(99)00034-6
  34. Scullion, J., and A. Malik. 2000. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after open cast mining for coal. Soil Biol. Biochem., 32:119-126. https://doi.org/10.1016/S0038-0717(99)00142-X
  35. Siegel, S. 1956. Non-parametric statistics for the behavioral sciences. McGraw-Hill, New York.
  36. Springett, J. A. 1983. Effect of Five Species of Earthworm on Some Soil Properties. J. Appl. Ecol., 20:865-872. https://doi.org/10.2307/2403131
  37. Stockdill, S. M. J., and G. C. Cossens. 1966. The role of earthworms in pasture production and moisture conservation. Proc. N. Z. Grassl. Assoc., 28:168-183.
  38. Verhoef, H. A., and A. J. van Selm. 1983. Distribution and population dynamics of Collembola in relation to soil moisture. Ecography, 6:387-388. https://doi.org/10.1111/j.1600-0587.1983.tb01234.x
  39. Wickenbrock, L., and C. Heisler. 1997. Influence of earthworm activity on the abundance of collembola in soil. Soil Biol. Biochem., 29:517-521. https://doi.org/10.1016/S0038-0717(96)00175-7