• 제목/요약/키워드: forecasting system

검색결과 1,552건 처리시간 0.024초

융합도시모델링을 통한 그린인프라 수요 예측 및 지오디자인 적용 - 도시 레질리언스를 위한 근거 기반 디자인 - (A Spatial Projection of Demand for Green Infrastructure and Its Application to GeoDesign - Evidence-Based Design for Urban Resilience -)

  • 곽윤신
    • 한국조경학회지
    • /
    • 제51권5호
    • /
    • pp.30-43
    • /
    • 2023
  • 그린인프라는 지속가능한 커뮤니티를 조성하는 데에 주요한 전략으로 고려되고 있다. 하지만 도시 레질리언스와 시스템의 역동성이라는 관점에서 그린인프라에 관한 연구는 아직 부족하며 이를 어떻게 물리적인 적용과 융합하는가에 관한 연구 역시 미미하다. 본 연구는 두 가지의 원인에 주목한다. 첫째는 정적변수를 고려하는 기존의 그린인프라 계획과 동적변수를 고려하는 도시모델링 연구 사이의 간극이며, 둘째는 도시모델링 연구와 조경설계 간의 정보 및 방법의 차이이다. 본 연구는 도시성장에 따른 그린인프라의 수요의 분포를 전망하며 설계의사결정을 지원하는 융합모델링을 제안한다. LEAM모델과 MCDA모델을 융합하여 그린인프라의 서비스와 사회경제적 도시변화의 관계성을 평가하고, 2050년의 그린인프라의 수요를 공간적으로 전망한다. 모델의 결과는 시카고 외곽에서의 도시화가 진행될수록 생태시스템 서비스의 질적 저하가 일어날 가능성이 있음을 말한다. 이는 경제성장에 의해 그린인프라에 대한 수요가 지리적으로 변화할 수 있음을 나타내며, 그린인프라 전략이 현재와 미래를 유동적이자 포괄적으로 고려해야 함을 제안한다. 나아가 본 연구는 스튜디오 환경에서의 생산된 정보를 학생들과 공유하여 근거기반 설계의 적용과 가능성에 관해 논의한다. 지오디자인의 관점에서 그린인프라 설계 및 계획과 도시시스템 연구의 융합을 통해 효율적인 설계의사결정을 지원함으로써 보다 탄력적인 도시환경을 조성하는데 기여하고자 한다.

효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현 (Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT)

  • 노태경;하상현;김기환;강영진;정석찬
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.73-82
    • /
    • 2023
  • 현재 수산업 종사자의 78%를 차지하고 있는 인력 고령화에 따른 노동력 부족 문제를 해결하기 위해 객체 검출 및 추적 알고리즘을 주요 내용으로 하는 스마트 양식 기술에 대한 연구가 활발히 진행되고 있다. 이러한 기술들은 어류의 크기 분석, 행동 패턴 예측 등의 작업이 가능하여 실시간 모니터링 및 자동화 시스템의 구축이 용이할 것으로 기대된다. 본 연구에서는 양식 시설 외부에 설치된 카메라로부터 수집된 영상 데이터를 기반으로 어류 검출 및 추적 알고리즘을 활용하였다. 수중 조건, 암모니아, pH 농도에 따른 카메라 부식 문제로 인한 높은 유지보수 비용 문제를 극복하는 것을 목표로 하였다. 어류 객체 검출을 위해 YOLOv7 모델을 활용한 실시간 모니터링 시스템의 성능을 분석하였고, 어류의 움직임을 추적하기 위해 SORT 알고리즘을 활용하였다. YOLOv7 훈련 결과 PR Curve 기반의 Recall과 Precision 값의 상충 관계를 밝혀내 조명에 의한 물줄기와 그림자의 오검출을 최소화하였음을 알 수 있다. 어류 추적을 위해 우리는 재식별화를 통해 효과적인 추적을 확인하였다. 이러한 연구 결과는 스마트 양식 산업의 운영 효율성을 높이고 양식 시설의 어류 관리 개선을 용이하게 할 것으로 기대된다.

가정과교육에서의 직업역량 강화 방안 탐색을 위한 기초 연구 - NCS 기반 고교 직업교육과정 개정과 가사실업계 직업교육의 변화 방향 탐색 - (Fundamental research to investigate methods of vocational competency enforcement in field of home economics education - revision of the current NCS based vocational highschool education curriculum and investigation in change of direction in vocational home economics education -)

  • 장명희
    • 한국가정과교육학회지
    • /
    • 제26권4호
    • /
    • pp.129-146
    • /
    • 2014
  • 이 연구는 가정과교육에서의 직업역량 강화를 위한 기초연구로서 가정계 직업교육과 관련한 경제 사회적 환경 변화와 운영 현황을 분석하고, 국가직무능력표준(NCS; National Competency Standard) 기반 교육과정 개정과 연계한 교육과정의 변화 방향을 모색하는데 목적을 두었다. 연구 방법은 주로 관련 문헌 및 자료 분석, 전문가 자문 및 공청회 개회 등을 통해 진행되었다. 연구의 주요 결과로는 첫째, 가정계 직업교육과 관련한 주요 환경 변화 요인은 인구 구조의 변화, 성별 경제 활동의 변화, 세대 구성의 변화, 통신 기술의 변화, 생활 기술의 혁신 등으로 집중되었다. 이들 변화 요인은 관련 산업의 혁신과 생활의 변화, 인력의 수요, 각 직무에서 요구하는 역량의 변화 등을 예고하고 있다. 둘째, 가정계 직업교육 운영 현황 분석 결과, 2013년 현재 가사실업계열 학교는 전체 특성화고의 9.4%를 차지했으며, 8개 기준학과가 분야별 전문화, 특성화 및 연계 등을 통해 137개의 개설 학과명으로 운영되고 있었다. 졸업생의 진로현황은, 기준학과별로 차이가 있으나 전체 취업률은 44.7%로 진학률 41.9%보다 높게 나타났으며, 2010년(전체취업률 16.9%, 진학률 75.2%)에 비해 두드러진 변화로 이는 특성화고의 취업중심 교육으로의 정책 변화가 가져온 성과로 해석된다. 셋째, 국가직무능력표준 기반 고교 직업교육과정 개정과 가정계 직업교육의 방향에서는 정부의 능력중심사회 구현을 위한 국가직무능력표준의 개발을 중심으로 한 교육과정 개정 배경, 개정의 방향과 중점 사항을 고찰하고 가사실업계열의 계열 재구조화(안)과 기준학과 개편(안), 후속 연구에서의 전제 사항을 제시하였다.

  • PDF

국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가 (The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation)

  • 이승재;송지애;김유정
    • 한국농림기상학회지
    • /
    • 제18권4호
    • /
    • pp.307-319
    • /
    • 2016
  • 국가농림기상센터(NCAM)에서는 수요자 맞춤형 영농 영림을 지원하기 위하여 전용 수치모델링시스템인 지면대기모델링패키지(LAMP) 버전 1을 구축하였다. 이 패키지는 두 가지의 큰 축으로 구성되어 있다. 하나는 WRF 기상모델과 Noah-MP 지면모델의 결합시스템인 WRF/Noah-MP 시스템이고, 다른 하나는 Noah-MP 지면 모델의 오프라인 독립구동형 1차원 버전이다. 전자는 7일 이상의 중기 기상예측 자료를 1km 내외의 고해상도로 생산하는 일을 담당하고, 후자는 대표적인 농림생태계에 대하여 1년 지면모의 자료를 15분 간격으로 생산하는 일을 담당한다. 본 연구의 목적은 NCAM-LAMP의 두 구성 요소를 간단히 설명하고, 초기의 수치모의 성능을 평가하는데 있다. WRF/Noah-MP 결합시스템은 동아시아를 포함하는 어미격자 도메인에 최고 810m의 수평 해상도를 갖는 3개의 둥지격자로 구축되었으며, 가장 안쪽 도메인은 광릉 활엽수림 관측지와 침엽수림 관측지(GDK 및 GCK)를 포함한다. 이 결합시스템은 현재 미국 환경예측센터의 FNL 자료를 초기 및 경계자료로 이용하여 구동되며, 여러 개의 약 8일 모의 결과를 연결시켜 장기간에 대한 모의 자료를 생산하였다. 정량적 검증 변수는 WRF/Noah-MP 결합시스템의 2m 기온, 10m 바람, 2m 습도, 강수이며, 기상청 ASOS 관측 자료와 WRF/Noah-MP 결합시스템 모의 자료 사이의 차이를 이용하여 각 도메인에서 동적 식생 포함 유무에 따른 모의 오차를 계산하였다. 강수 모의의 정확도는 탐지확률(POD)과 공평위협점수(ETS)로 구성된 표를 이용하여 조사하였다. 오프라인 독립구동형 지면모델은 1년 기간에 대해 모의 결과를 생산하였으며, KoFlux 관측자료와 비교하여, 순복사 플럭스, 현열 플럭스, 잠열 플럭스 및 토양 수분 함량을 평가하였다. WRF/Noah-MP 결합시스템의 모의 결과에 따르면, 모든 도메인 중에서 도메인 4(810m 해상도)에서 2m 기온, 10m 바람 및 2m 습도에 대하여 가장 작은 RMSE를 보였다. 동적 식생을 포함시키면 모든 도메인에서 10m 바람의 모의 오차가 감소하게 되는 경향을 보였다. 도메인 2(7,290m 해상도)에서는 강수 모의 점수가 가장 높았으나, 동적 식생을 포함시킴에 따른 효과는 별로 없었다. 독립구동형 1차원 Noah-MP의 지면모의 결과는 복사 플럭스와 토양 수분의 패턴 및 크기를 포착하였으며, 엽면적지수의 모델 입력 부분을 보충하고, 모델 물리과정의 적절한 조합을 찾아내는 노력을 통해 개선될 수 있는 여지를 남겼다.

뉴스기사를 이용한 소비자의 경기심리지수 생성 (Construction of Consumer Confidence index based on Sentiment analysis using News articles)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.1-27
    • /
    • 2017
  • 경제주체들의 경기상황에 대한 판단 및 전망은 경기변동에 영향을 미치므로 경기심리지수와 거시경제지표들 간에는 밀접한 관련성을 나타내는 것으로 알려져 있다. 경기선행지표로 국내에서 많이 사용되는 경기심리지수에는 소비자동향조사, 기업경기조사, 경제심리지수가 있다. 그러나 설문조사를 통해 생성된 지수는 자료의 성격상 속보성이 떨어지는 문제가 있다. 본 연구에서는 이러한 정형데이터의 한계를 보완할 수 있도록 비정형데이터에서 정보를 추출해 경기심리지수를 생성하고, 경제분석에서의 활용 가능성을 검토하였다. 민간소비와 관련된 실물지표에는 소매판매업지수와 서비스업생산지수를 사용하였고, 고용지표에는 고용률과 실업률을, 가격지표에는 소비자물가상승률과 가계의 대출금리를 사용하여 지표들 간의 추이 분석 및 시차구조 파악을 위한 교차상관분석을 수행하였다. 마지막으로 이들 지표들에 대한 예측 가능성을 점검하였다. 분석결과, 다른 지표들의 선행지수로 많이 사용되는 소비자심리지수와 비교해 선택 지표들과 높은 상관관계를 보이며, 1~2개월 선행한 것으로 나타났다. 예측력 또한 향상되어 텍스트데이터에서 생성한 소비자 경기심리지수의 유용성이 확인되었다. 온라인에서 생성되는 뉴스기사나 소셜 SNS 등의 텍스트 데이터는 속보성이 뛰어나고, 커버리지가 넓어 특정 경제적 이슈가 발생할 경우 이것이 경제에 미치는 영향을 빠르게 파악할 수 있다는 점에서 경기판단지표로써의 잠재적 가능성이 클 것으로 보인다. 경제분석에서 비정형데이터를 활용한 국내연구는 초기 단계지만 데이터의 유용성이 확인되면 그 활용도가 크게 높아질 것으로 기대한다.

커뮤니티 비지니스 지정 현황과 발전방안 제언 - 강원도 사회적기업과 마을기업을 중심으로 - (A Study of Growth Plan and the existing designed Community Businesses in Gangwon-do - Social businesses and town businesses in Gangwon-do -)

  • 배중남;박노국;지경배
    • 벤처창업연구
    • /
    • 제8권2호
    • /
    • pp.75-82
    • /
    • 2013
  • 본 연구는 강원도 내 커뮤니티비지니스의 자립화와 지속화에 기여하기 위해 추진했다. 이를 위해 커뮤니티비지니스의 개념을 정립 후, 커뮤니티비지니스의 지정현황을 파악하고, 커뮤니티비지니스의 사업내용과 사업추진형태를 분석 후, 일본의 100년 이상의 기업 가게의 지속요인을 분석하여 도내 커뮤니티비지니스의 지속화를 위한 방안을 모색했다. 강원도내 커뮤니티비지니스는 예비사회적기업 86개, 마을기업 62개, 사회적기업 38개, 계186개가 지정 운영되고 있다. 예비적사회기업과 사회적 기업은 도시지역에 많이 지정되어 있고 사업내용은 제조와 교육부문이 많고 기업의 추진형태는 주식회사와 유한회사가 많았다. 반면, 마을기업은 군지역에 지정이 많고 사업내용은 농식품과 문화부분이 많으며 사업추진주체가 영농법인이 압도적으로 많았다는 차이를 알 수 있었다. 특히 커뮤니티비지니스 사업추진주체가 임의단체인 기업이 총 38개 기업으로 전체의 20.4%로 영농법인수까지 고려하면 기업경영 전문성의 부족을 보안할 필요를 알 수 있었다. 도내 커뮤니티비지니스가 지속성을 유지하기 위해서는 선진사례분석으로 부터 소비자에게 신뢰를 줄 수 있는 좋은 재료의 확보, 제품 품질의 향상과 유지를 위한 기술력, 기업의 전통유지와 새로운 수요에 대응하면서 기업을 유지할 수 있는 인력 양성으로 정리 할 수 있었다. 이는 도내 커뮤니티비지니스가 지역사회와 연계하여 질 좋은 재료를 확보하고 품질 향상과 유지를 위한 계속적인 연구와 노력이 필요하며, 또 기업 경영 주체의 경영전문성을 확보하기 위한 학계와 기업, 기업과 행정, 기업과 기업이 연계하여 지역사회의 지원 운영 체계 구축의 필요성을 알 수 있었다.

  • PDF

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구 (Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System)

  • 김지혜;엄현민;최종국;이상민;김영호;장필훈
    • 한국해양학회지:바다
    • /
    • 제20권1호
    • /
    • pp.1-15
    • /
    • 2015
  • 한반도 주변을 연구해역으로 하는 지역 해양순환예측시스템을 이용하여 관측기반의 분석 자료인 Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA) 해수면 온도 자료의 동화를 통한 초기장 개선효과가 황해, 동중국해 그리고 동해의 해수면온도 예측결과에 미치는 영향을 조사하였다. 이를 위해서, 본 연구에서는 3차원 최적내삽법을 적용한 실험(Exp. DA)과 적용하지 않은 실험(Exp. NoDA)을 수행하여 각각의 실험결과를 관측자료와 비교 분석하였다. 2011년 9월 OSTIA 해수면 온도 자료와의 비교결과, Exp. NoDA는 24, 48, 72 예측시간에서 약 $1.5^{\circ}C$의 비교적 높은 Root Mean Square Error(RMSE)를 보였으나, Exp. DA에서는 모든 예측시간에서 $0.8^{\circ}C$ 이하의 상대적으로 낮은 RMSE가 나타났다. 특히, 초기 24시간 예측결과에서 RMSE는 $0.57^{\circ}C$를 보여 Exp. NoDA에 비해 예측성능이 크게 향상된 결과를 보였다. 해역별로는 황해와 동해에서 자료동화 적용 시, 60% 이상의 높은 RMSE 감소율이 나타났다. 기상청 8개 지점 연안 계류부이의 표층수온 자료를 이용하여 자료동화 효과를 계절적으로 살펴본 결과, 전반적으로 여름철을 제외한 모든 계절에서 자료동화 적용 후 70% 이상의 높은 RMSE 감소율을 보여 한반도 연안 표층수온의 단기 예측성이 향상됨을 확인하였다. 또한, 해수면 온도 자료의 동화로 인한 해양상층부의 수온구조 변화를 살펴보기 위해 동해를 대표해역으로 하여 Argo 수온 프로파일 자료와 실험결과를 비교하였다. 특히 연직 혼합이 강한 겨울철 해양 상층부(<100 m) 경우 Exp. DA의 RMSE가 Exp. NoDA에 비해 약 $1.5^{\circ}C$ 감소한 결과를 보여 해수면 온도의 자료동화 효과가 해양상층부의 수온 예측성 향상에 기여함을 확인하였다. 하지만, 겨울철 혼합층 아래에서는 Argo 관측 대비 수온 오차가 오히려 증가한 해역도 존재하여 해수면 온도 자료동화의 한계성도 나타났다.

2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의 (High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period)

  • 송지애;이승재;강민석;문민규;이정훈;김준
    • 한국농림기상학회지
    • /
    • 제17권4호
    • /
    • pp.384-398
    • /
    • 2015
  • 본 연구에서는 청미천 농경지를 중심으로 고해상도 지형 및 토지피복 자료 기반의 WRF/Noah-MP 결합시스템을 구축하고 수치모의 한 결과를 2014년 8월 21일부터 9월 10일까지의 청미천 하계 특별관측 자료와 비교하여, 농경지에서의 지면 및 대기모의 성능을 평가하였다. 지면 및 대기 변수의 단기 및 중기모의에 있어서 Noah-MP의 동적 식생 가동이 얼마나 유용한지를 살펴보기 위하여, 동적 식생을 포함하지 않은 실험(CTL)과 포함한 실험(DVG)을 관측기간에 대해 양방향 6중 둥지격자 시스템으로 수행하였다. 본 연구의 결과는 크게 세 가지로서 다음과 같다. 1) CTL 실험은 낮 동안의 순단파 복사 에너지를 과대 모의 함에 따라 현열 및 잠열 플럭스와 보웬비도 관측에 비해 과대 모의하는 경향을 보였다. CTL 실험의 기온은 관측을 대체로 잘 따라갔으나 일출 후 기온의 상승 속도가 관측에 비해 빠른 모습을 보였다. 최저 기온 및 최고 기온의 시점은 잘 모의하였는데, 특히 일 최저기온의 모의는 관측과 $0.3^{\circ}C$ 오차 이내의 성능을 보여, 동해 및 병해충과 연관된 엽면수분 지속시간 예측에 고무적인 결과로 평가되었다. CTL 실험의 10m 바람은 동서 및 남북 풍속 모두 대체로 과대 모의하는 경향을 보였고, 강수 또한 과대 모의하는 경향을 보였으나 강수의 시작 종료시점은 대체로 잘 포착하였다. 2) Noah-MP의 동적 식생을 구동시킨 DVG 실험은 CTL 실험에 비해 엽면적지수, 단파 복사, 지표면 플럭스, 보웬비, 기온, 바람, 강수의 모의를 전반적으로 관측에 더 가깝게 생산하는 것으로 나타났다. 강수, 온도, 복사, 가용 영양소 등의 변동에 대응하여 엽면적지수를 예단하는 DVG 실험은 CTL 실험보다 더 큰 엽면적지수를 생산했으며, 이는 실측에 더 가까운 결과였다. DVG 실험에서도 일출 후 기온 상승률은 관측에 비해 높았는데, 이는 CTL와 DVG 실험 모두에서 공통으로 사용한 YSU 경계층 방안이 갖는 혼합층의 조기 성장 특성과 관련이 있는 것으로 분석되었다. CTL 실험이 보인 바람과 강수의 과대모의 경향도 DVG 실험에서는 어느 정도 완화되는 개선점을 보였다. 3) 수평 해상도의 증가에 따른 청미천 농경지의 수치모의 성능 향상은 지표면 플럭스, 기온, 바람 강수 모두에서 미비하거나 거의 없는 것으로 나타났으며, 보다 정확한 평가를 위해서는 농경지 상의 여러 지점에서 입체적인 관측이 이뤄져야 하고, 모형에 사용되는 지형 및 토지피복 자료의 도메인 간 일관성이 확보되어야 할 것이다.

기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석 (Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea)

  • 공인학;김광진;이양원
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.107-120
    • /
    • 2017
  • 산불은 한번 발생하면 기상, 지형 등 여러 악조건으로 인해 효과적인 진화가 어려워 넓은 면적으로 확대되는 경우가 많다. 따라서 산불의 예방이 중요하기 때문에 세계 각국에 다양한 산불위험지수와 예측시스템이 존재한다. 그러나 이러한 산불위험지수 및 지면건조지수가 우리나라의 산불발생에 적용가능한지에 대한 객관적인 평가는 이루어진 바 없다. 이에 본 연구에서는 1.5km 격자의 LDAPS(Local Analysis and Prediction System) 기상자료 및 1km 격자의 MODIS(Moderate-resolution Imaging Spectroradiometer) 위성자료를 활용하여 각종 산불위험지수와 지면건조지수의 우리나라 산불발생에 대한 민감도분석을 수행하고자 한다. 기상기반 산불위험지수로는 호주의 FFDI(forest fire danger index), 캐나다의 FFMC(fine fuel moisture code), 미국의 HI(Haines index), 그리고 학술연구에서 제시된 MNI(modified Nesterov index)를 산출하였고, 위성기반 지면건조지수인 NDDI(normalized difference drought index)와 TVDI(temperature vegetation dryness index)를 산출하여 우리나라 산불발생에 대한 적용가능성 실험을 수행하였다. 2013년 1월부터 2017년 5월까지 발생한 피해면적 1ha가 넘는 산불 120건과 6종류의 지수를 비교한 결과, FFDI는 피해면적 10ha가 넘는 모든 산불에 대하여 극도로 높은 CDF(cumulative density function) 값을 나타냈으며, FFDI와 FFMC는 피해면적 3ha가 넘는 산불에 대하여 평균 CDF 값이 0.95가 넘게 나타나는 등 매우 우수한 성능을 보였다. 반면, MNI는 이슬점온도와 기온의 차이가 크지 않은 우리나라의 계절적 특성 때문에 2월의 산불예측을 거의 하지 못하였고, TVDI는 전체적으로 산불발생에 대한 민감도가 낮은 것으로 나타났다. NDDI는 피해면적의 크기에 상관없이 평균 CDF 값이 안정적으로 높게 산출되어 위성기반 지면건조지수로서 보조적인 활용가능성이 있을 것으로 보인다. 이러한 산불위험지수와 지면건조지수를 취사선택 및 융합하여 활용한다면, 우리나라 산불예측에 일조할 수 있을 것으로 사료된다.