DOI QR코드

DOI QR Code

A Spatial Projection of Demand for Green Infrastructure and Its Application to GeoDesign - Evidence-Based Design for Urban Resilience -

융합도시모델링을 통한 그린인프라 수요 예측 및 지오디자인 적용 - 도시 레질리언스를 위한 근거 기반 디자인 -

  • Kwak, Yoonshin (Division of Urban Planning and Landscape Architecture, Gachon University)
  • 곽윤신 (가천대학교 도시계획 조경학부)
  • Received : 2023.08.02
  • Accepted : 2023.08.29
  • Published : 2023.10.31

Abstract

Green infrastructure(GI) is considered a key strategy in establishing sustainable communities. However, research on GI from the perspective of urban system dynamics and resilience lacks depth, as does its integration with physical design. This research addresses two primary causes. First, there is a gap in methods between existing GI planning, which considers static variables, and urban modeling research, which addresses dynamic variables. Second, there is a gap in information between landscape design and urban modeling research. To address these issues, this study proposes an integrated modeling approach in consideration of design decision-making. By combining the LEAM model and MCDA model, this study evaluates the relationship between GI services and socioeconomic growth, while spatially forecasting the geographies of GI demand in 2050. The resulting information reveals a potential degradation in ecosystem services over the region due to Chicago's sub-urbanization. This indicates that there would be a spatial shift in GI demand, emphasizing the need for comprehensive, dynamic GI strategies. This study further discusses the applications of evidence-based design in a studio environment. This study aims to contribute to the GeoDesign literature in terms of the creation of a more resilient urban environment by facilitating efficient evidence-based decision-making.

그린인프라는 지속가능한 커뮤니티를 조성하는 데에 주요한 전략으로 고려되고 있다. 하지만 도시 레질리언스와 시스템의 역동성이라는 관점에서 그린인프라에 관한 연구는 아직 부족하며 이를 어떻게 물리적인 적용과 융합하는가에 관한 연구 역시 미미하다. 본 연구는 두 가지의 원인에 주목한다. 첫째는 정적변수를 고려하는 기존의 그린인프라 계획과 동적변수를 고려하는 도시모델링 연구 사이의 간극이며, 둘째는 도시모델링 연구와 조경설계 간의 정보 및 방법의 차이이다. 본 연구는 도시성장에 따른 그린인프라의 수요의 분포를 전망하며 설계의사결정을 지원하는 융합모델링을 제안한다. LEAM모델과 MCDA모델을 융합하여 그린인프라의 서비스와 사회경제적 도시변화의 관계성을 평가하고, 2050년의 그린인프라의 수요를 공간적으로 전망한다. 모델의 결과는 시카고 외곽에서의 도시화가 진행될수록 생태시스템 서비스의 질적 저하가 일어날 가능성이 있음을 말한다. 이는 경제성장에 의해 그린인프라에 대한 수요가 지리적으로 변화할 수 있음을 나타내며, 그린인프라 전략이 현재와 미래를 유동적이자 포괄적으로 고려해야 함을 제안한다. 나아가 본 연구는 스튜디오 환경에서의 생산된 정보를 학생들과 공유하여 근거기반 설계의 적용과 가능성에 관해 논의한다. 지오디자인의 관점에서 그린인프라 설계 및 계획과 도시시스템 연구의 융합을 통해 효율적인 설계의사결정을 지원함으로써 보다 탄력적인 도시환경을 조성하는데 기여하고자 한다.

Keywords

References

  1. Alberti, M.(2017) Simulation and Design of Hybrid Human-Natural-Technological Systems. Technology | Architecture + Design 1: 135-139. https://doi.org/10.1080/24751448.2017.1354602
  2. Alberti, M. and J. M. Marzluff(2004) Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosystems 7: 241-265. https://doi.org/10.1023/B:UECO.0000044038.90173.c6
  3. Alim, M. A., A. Rahman, Z. Tao, B. Garner, R. Griffith and M. Liebman(2022) Green roof as an effective tool for sustainable urban development: An Australian perspective in relation to stormwater and building energy management. Journal of Cleaner Production 362: 132561.
  4. Allen, W. L.(2012) Advancing green infrastructure at all scales: From landscape to site. Environmental Practice 14: 17-25.
  5. Boulange, C., C. Pettit, L. D. Gunn, B. Giles-Corti and H. Badland(2018) Improving planning analysis and decision making: The development and application of a walkability planning support system. Journal of Transport Geography 69: 129-137. https://doi.org/10.1016/j.jtrangeo.2018.04.017
  6. Cai, Z., Y. Kwak, V. Cvetkovic, B. Deal and U. Mortberg(2023) Urban spatial dynamic modeling based on urban amenity data to inform smart city planning. Anthropocene 42: 100387.
  7. Champlin, C., M. te Brommelstroet and P. Pelzer(2019) Tables, tablets and flexibility: Evaluating planning support system performance under different conditions of use. Applied Spatial Analysis and Policy 12: 467-491. https://doi.org/10.1007/s12061-018-9251-0
  8. Chen, S., Y. Kwak, L. Zhang, G. Mosey and B. Deal(2021) Tightly coupling input output economics with spatio-temporal land use in a dynamic planning support system framework. Land 10: 1-17. https://doi.org/10.3390/land11010001
  9. Chicago Department of Water Management(CDWM)(2018) City of Chicago Stormwater Management Plan.
  10. Chicago Metropolitan Agency for Planning(CMAP)(2016) Integrating Green Infrastructure.
  11. City of Chicago(2014) Green Stormwater Infrastructure Strategy.
  12. Cong, C., Y. Kwak and B. Deal(2022) Incorporating active transportation modes in large scale urban modeling to inform sustainable urban development. Computers, Environment and Urban Systems 91: 101726.
  13. Davis, J., K. D. Pijawka, E. Wentz, M. Hale and D. A. King(2021) Evaluating geodesign for community-based tribal planning. Journal of the American Planning Association 87: 527-541. https://doi.org/10.1080/01944363.2021.1873168
  14. Davoudi, S. and L. Porter(2012) Resilience: A bridging concept or a dead end? Planning Theory & Practice 13: 299-333. https://doi.org/10.1080/14649357.2012.677124
  15. Deal, B. and H. Pan(2016) Discerning and addressing environmental failures in policy scenarios using planning support system (PSS) technologies. Sustainability 9(1): 13.
  16. Deal, B., V. Pallathucheril and T. Heavisides(2013) Ecosystem services, green infrastructure and the role of planning support systems. In Geertman, S., F. Toppen and J. Stillwell, eds., Planning Support Systems for Sustainable Urban Development. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 187-207.
  17. Deal, B., H. Pan, S. Timm and V. Pallathucheril(2017) The role of multidirectional temporal analysis in scenario planning exercises and Planning Support Systems. Computers, Environment and Urban Systems 64: 91-102. https://doi.org/10.1016/j.compenvurbsys.2017.01.004
  18. Di Marino, M., M. Tiitu, K. Lapintie, A. Viinikka and L. Kopperoinen(2019) Integrating green infrastructure and ecosystem services in land use planning. Results from two finnish case studies. Land Use Policy 82: 643-656. https://doi.org/10.1016/j.landusepol.2019.01.007
  19. Dong, J., M. Lin, J. Zuo, T. Lin, J. Liu, C. Sun and J. Luo(2020) Quantitative study on the cooling effect of green roofs in a high-density urban Area-A case study of Xiamen, China. Journal of Cleaner Production 25: 120152.
  20. Ernstson, H.(2013) The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landscape and Urban Planning 109: 7-17. https://doi.org/10.1016/j.landurbplan.2012.10.005
  21. Fiksel, J.(2006) Sustainability and resilience: Toward a systems approach. Sustainability: Science, Practice and Policy 2: 14-21. https://doi.org/10.1080/15487733.2006.11907980
  22. Gu, Y., B. Deal and L. Larsen(2018) Geodesign processes and ecological systems thinking in a coupled human-environment context: An integrated framework for landscape architecture. Sustainability 10: 3306.
  23. Holling, C. S.(1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4(1): 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
  24. Jiang, H., S. Geertman and P. Witte(2020) The effects of contextual factors on PSS usefulness: An international questionnaire survey. Applied Spatial Analysis and Policy 14: 221-245. https://doi.org/10.1007/s12061-020-09352-5
  25. Kwak, Y. and B. Deal(2021) Resilient planning optimization through spatially explicit, bi-directional sociohydrological modeling. Journal of Environmental Management 300: 113742.
  26. Kwak, Y., B. Deal and T. Heavisides(2021a) A large scale multi criteria suitability analysis for identifying solar development potential: A decision support approach for the state of Illinois, USA. Renewable Energy 177: 554-567. https://doi.org/10.1016/j.renene.2021.05.165
  27. Kwak, Y., B. Deal and G. Mosey(2021b) Landscape design toward urban resilience: Bridging science and physical design coupling sociohydrological modeling and design process. Sustainability 13: 4666.
  28. Kwak, Y., C. Park and B. Deal(2020) Discerning the success of sustainable planning: A comparative analysis of urban heat island dynamics in Korean new towns. Sustainable Cities and Society 61: 102341.
  29. Li, F., S. Guo, D. Li, X. Li, J. Li and S. Xie(2020) A multi-criteria spatial approach for mapping urban ecosystem services demand. Ecological Indicators 112.
  30. Li, Y., L. Zhang, J. Qiu, J. Yan, L. Wan, P. Wang, N. Hu, W. Cheng and B. Fu(2017) Spatially explicit quantification of the interactions among ecosystem services. Landscape Ecology 32: 1181-1199. https://doi.org/10.1007/s10980-017-0527-6
  31. Liao, K. H.(2012) A theory on urban resilience to floods-A basis for alternative planning practices. Ecology and Society 17.
  32. Liu, J., T. Dietz, S. R. Carpenter, M. Alberti, C. Folke, E. Moran, A. N. Pell, P. Deadman, T. Kratz, J. Lubchenco, E. Ostrom, Z. Ouyang, W. Provencher, C. L. Redman, S. H. Schneider and W. W. Taylor (2007) Complexity of coupled human and natural systems. Science 317: 1513-1516. https://doi.org/10.1126/science.1144004
  33. Matta, A. and M. Serra(2016) A geodesign approach for using spatial indicators in land-use planning. Civil Engineering and Architecture 4: 183-192. https://doi.org/10.13189/cea.2016.040502
  34. Meerow, S.(2019) A green infrastructure spatial planning model for evaluating ecosystem service tradeoffs and synergies across three coastal megacities. Environmental Research Letters 14.
  35. Meerow, S. and J. P. Newell(2017) Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning 159: 62-75. https://doi.org/10.1016/j.landurbplan.2016.10.005
  36. Newell, J. P., M. Seymour, T. Yee, J. Renteria, T. Longcore, J. R. Wolch and A. Shishkovsky(2013) Green alley programs: Planning for a sustainable urban infrastructure? Cities 31: 144-155. https://doi.org/10.1016/j.cities.2012.07.004
  37. Norberg, J. and G. Cumming(2008) Complexity Theory for a Sustainable Future. Columbia University Press.
  38. Pan, H., B. Deal, G. Destouni, Y. Zhang and Z. Kalantari(2018) Sociohydrology modeling for complex urban environments in support of integrated land and water resource management practices. Land Degradation & Development 29: 3639-3652.
  39. Saaty, R. W.(1987) The analytic hierarchy process-what it is and how it is used. Mathematical Modelling 9: 161-176. https://doi.org/10.1016/0270-0255(87)90473-8
  40. Steinitz, C.(2012) A Framework for Geodesign: Changing Geography by Design. Esri.
  41. Wang, Y. C., J. K. Shen and W. N. Xiang(2018) Ecosystem service of green infrastructure for adaptation to urban growth: Function and configuration. Ecosystem Health and Sustainability 4: 132-143. https://doi.org/10.1080/20964129.2018.1474721
  42. Woodward, J. H.(2008) Envisioning resilience in volatile Los Angeles landscapes. Landscape Journal 27(1): 97-113. https://doi.org/10.3368/lj.27.1.97
  43. Zhang, L., C. Cong, H. Pan, Z. Cai, V. Cvetkovic and B. Deal(2021) Socioecological informed comparative modeling to promote sustainable urban policy transitions: Case study in Chicago and Stockholm. Journal of Cleaner Production 281: 125050.