Browse > Article
http://dx.doi.org/10.7850/jkso.2015.20.1.1

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System  

Kim, Ji Hye (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology)
Eom, Hyun-Min (Marine Meteorology Division, Korea Meteorological Administration)
Choi, Jong-Kuk (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology)
Lee, Sang-Min (Forecast Research Division, National Institute of Meteorological Research)
Kim, Young-Ho (Climate Change & Coastal Disaster Research Department, Korea Institute of Ocean Science & Technology)
Chang, Pil-Hun (Global Environment System Research Division, National Institute of Meteorological Research)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.20, no.1, 2015 , pp. 1-15 More about this Journal
Abstract
Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.
Keywords
Optimal interpolation; Data assimilation; OSTIA; Sea surface temperature; Ocean forecast;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gao, Y., Arimoto, R., Duce, R. A., Lee, D. S., Zhou, M., 1992. Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year. Journal of Geophysical Research, 97: 3767-3777.   DOI
2 Gaspari, G., Cohn, S.E., 1999. Construction of correlation functions in two and three dimensions. Q. J. Roy. Met. Soc., 125: 723-757.   DOI   ScienceOn
3 Hamill, T.M., Whitaker, J.S., Snyder, C., 2001. Distance-dependent filtering of background error covariances in an ensemble Kalman Filter. Mon. Weath. Rev., 129: 2776-2790.   DOI
4 Houtekamer, P.L., Mitchell, H.L., 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weath. Rev., 129: 123-137.   DOI
5 Huang, Y., W.F. Yang and L. Chen, 2010. Water resources change in response to climate change in Changjiang River basin. Hydrol. Earth Syst. Sci. Discuss., 7: 3159-3188.   DOI
6 Hunt, B.R., Kostelich, E.J., Szunyogh, I., 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform kalman filter. Physica D, 230: 112-126.   DOI   ScienceOn
7 Jonah R.-J., E. Fiedler, M. Martin, 2011. Description and assessment of the OSTIA reanalysis, Forecasting Research Technical Report 561.
8 Jones, C., B. Marcpherson, 2012. The benefit of continuous data assimilation in a regional NWP model. Forecasting Research Technical Report 566.
9 Kantha, L.K., Choi, J.K., Schaudt, K.J., Cooper, C.K., 2005. A regional data-assimilative model for operational use in the Gulf of Mexico. Sturges, W., Lugo-Fernandez, A. (Eds.), Circulation in the Gulf of Mexico: Observations and Models, 161: 165-180.   DOI
10 Mellor, G.L. and T. Yamada, 1982. Developement of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20: 851-875.   DOI
11 Minnett, P. and A. Kaiser-Weiss, 2012. Near-surface oceanic temperature gradients. GHRSST discussion document.
12 Moon, J.-H., N. Hirose, and J.-H. Yoon, 2009. Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. Journal of Geophysical Research, 114: C808016.
13 National Institute of Meteorological Research (NIMR), 2013. Research for the Meteorological and Earthquake Observation Technology and Its Application (II). National Institute of Meteorological Research, Seoul, 204 pp.
14 Ochotta T., C. Gebhardt, V. Bondarenko, D. Saupe, W. Wergen, 2007. On Thinning Methods for Data Assimilation of Satellite Observations. 23. Intl. Conf. on IIPS.
15 Oke, P.R., J.S. Allen, R.N. Miller, G.D. Egbert, and P.M. Kosro, 2002. Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107: 3122.
16 Pacanowsky, R.C., S.G.H. Philander, 1981. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11: 1443-1451.   DOI
17 Price, J.F., 1981. Upper ocean response to hurricane. J. Phys. Oceanogr., 11: 153-175.   DOI
18 Ramachandran, R., Xiang L., Sunil M., Sara G., 2005. Intelligent Thinning Algorithm for Earth System Numerical Model Research and Application.
19 Shay, L.K., P.G. Black, A.J. Mariano, J.D. Hawkins, L. Russell, 1992. Upper ocean response to hurricane Gilber. J. Geophys. Res. Lett., 97: 227-248.
20 Wang, D.-P., L.-Y. Oey, T. Ezer, P. Hamilton, 2003. Nearsurface currents in Desoto Canyon. J. Phys. Oceanogr., 33: 313-326.   DOI
21 Xie, J. and J. Zhu, 2010. Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Modelling, 33: 283-298.   DOI   ScienceOn
22 Yang, J.Y., 2006. Path variability of the Changjiang Diluited Water in summer. Korea. Ph.D. Thesis, Seoul National University, Seoul, 109pp.
23 Yoon, J.-H., 1982a. Numerical experiment on the circulation in the Japan Sea. Part II. Influence of seasonal variations in atmospheric conditions on the Tsushima Current. J. Oceanogr. Soc. Japan, 38: 81-94.   DOI
24 Yoon, J.-H., 1982b. Numerical experiment on the circulation in the Japan Sea. Part III. Mechanism of the nearshore branch of the Tsushima Current. J. Oceanogr. Soc. Japan, 38: 125-130.   DOI
25 Yoon. J.-H., H. Kawamura, 2002. The formation and circulation of the intermediate water in the Japan Sean. J. Oceanogr., 58: 197-211.   DOI
26 Yoshikawa, Y., T. Awaji, K. Akitomo, 1999. Formation and circulation processes of intermediate water in the Japan Sea. J. Phys. Oceanogr., 29: 1701-1722.   DOI
27 You, S.H., H.-M. Eom and S.B. Ryoo, 2011. Numerical study of typhoon effects on the Changjiang Diluted Water using an operational ocean forecasting system. Journal of Coastal Research, SI64: 1927-1930.
28 Zavodsky, B., Steven, L., Xiang, L., Mike, L., Michael, S., Rahul, R., Sunil, M., Sara, G., William, L., 2008. Intelligent Data Thinning Algorithms for Satellite Imagery. IGARSS 3: 644-647.
29 Beckmann, A., and D. B. Haidvogel, 1993. Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23: 1736-1753.   DOI
30 Arakawa, A. and V. R. Lamb, 1977. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. General Circulation Models of the Atmosphere, J. Chang, Ed., Academic Press, Methods in Computational Physics, 17:173-265.
31 Chang, P.-H., A. Isobe, K.-R. Kang, S.-B. Ryoo, H.-S. Kang, and Y.-H. Kim, 2014. Summer behavior of the Changjiang diluted water to the East/Japan Sea: A modeling study in 2003. Cont. Shelf. Res., 81: 7-18.   DOI   ScienceOn
32 Donlon, C. J., Matthew M., John S., Jonah R.-J., 2012. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116: 140-158.   DOI   ScienceOn
33 Egbert, G.D., and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19(2): 183-204.   DOI
34 Eom, H-M., J.H. Kim, P.-H. Chang, S.-B. Kang, S.-B. Ryoo, Y.-J. Choi, 2013. Regional Ocean Forecasting System in KMA. NIMR (National Institute of Meteorological Research) Technical Note, 30 pp.
35 Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S Young, 1996. Bulk parameterization of air-sea fluxes in TOGA COARE. J. Geophys. Res., 101: 3747-3767.   DOI
36 Fu, W., J. She, S. Zhuang, 2011. Application of an Ensemble Optimal Interpolation in a North/Baltic Sea model: Assimilating temperature and salinity profiles. Ocean Modelling, 40: 227-245.   DOI   ScienceOn
37 Large, W.G., J.C. McWilliams, and S.C. Doney, 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32: 363-403.   DOI   ScienceOn
38 Kim, C.H., Kim, K., 1983. Characteristics and origin of the cold water mass along the east coast of Korea. J. Oceanol. Soc. Korea, 18: 73-83.
39 Kim, Y.-G., K. Kim 1999. Intermediate waters in the East/Japan Sea. J. Oceanogr., 55: 123-132.   DOI
40 Kim, Y.H., S.J. Lyu, B.-J. Choi, Y.-K. Cho and Y.-G. Kim, 2008. Implementation of the Ensemble Kalman Filter to a Double Gyre Ocean and Sensitivity Test using Twin Experiments, Ocean and Polar Research, 30(2): 129-140.   DOI   ScienceOn
41 Larsen, J., J.L. Høyer, and J. She, 2007. Validation of a hybrid optimal interpolation and Kalman filter scheme for sea surface temperature assimilation. J. Mar. Syst., 65: 122-133.   DOI   ScienceOn
42 Lazarus, S.M. and M.E. Splitt, 2010. Evaluation of Data Reduction Algorithms for Real-Time Analysis. Wea. Forecasting, 25: 837-851.   DOI   ScienceOn
43 Lee, H.J., J.-H. Yoon, H. Kawamura, and H.-W. Kang, 2003. Comparison of RIAMOM and MOM in Modeling the East Sea/Japan Sea Circulation. Ocean Polar Res., 25(3): 287-302.   DOI   ScienceOn
44 Li, Y., X. Gao, X. Zhang, and Y. Wang, 2010. Impact of Runoff on Salt Intrusion of Yangtze Estuary. Coast. Eng., 32: 1-6.
45 Malanotte-Rizzoli, P., 1996. Modern Approaches to Data Assimilation in Ocean Modeling. Elsevier, 1-455.
46 Manda, A.N. Hirose, and T. Yanagi, 2004. Feasible method for the assimilation of satellite-derived SST with an Ocean Circulation Model. J. Atmos. Oceanic Technol., 22: 746-756.
47 Song, Y. and D. B. Haidvogel, 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys., 115(1): 228-244.   DOI   ScienceOn
48 Shchepetkin, A.F. and J.C. McWilliams, 1998. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Monthly Weather Rev., 126: 1541-1580.   DOI
49 Shchepetkin, A.F. and J.C. McWilliams, 2005. The regional ocean modeling system (ROMS): A split-explicit, free-surface, topography - following - coordinate oceanic model. Ocean Modeling, 9: 347-404.   DOI   ScienceOn
50 Shu, Y., J. Zhu, D. Wang, C. Yan, X. Xiao, 2009. Performance of four sea surface temperature assimilation schemes in the South China Sea. Continental Shelf Research, 29: 1489-1501.   DOI   ScienceOn
51 Song, Y.T., D. Wright, 1998. A general pressure gradient formation for ocean models. Part II: Energy, momentum, and bottom torque consistency. Mon. Weather Rev., 126(12): 3231-3247.   DOI
52 Stark, J.D., C.J. Donlon, M.J. Martin, and M.E. McCulloch, 2007. An operational, high resolution, real time, global sea surface temperature analysis system. OCEANS 2007.
53 Thacker, W.C. and R.B. Long, 1988. Fitting dynamics to data. J. Geophys. Res., 93: 1227-1240.   DOI
54 Twigt, D.J., E.D. De Goede, E.J.O. Schrama, and H. Gerritsen, 2007. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing. Ocean Dynamics, 57: 467-484.   DOI   ScienceOn
55 Vorosmarty, C.J., B. Fekete, and B.A. Tucker. 1996. River Discharge Database, Version 1.0 (RivDIS v1.0), Volumes 0 through 6. A contribution to IHP-V Theme 1. Technical Documents in Hydrology Series. UNESCO, Paris.