• 제목/요약/키워드: forecasting models

검색결과 1,008건 처리시간 0.03초

실시간 수위 예측을 위한 다중선형회귀 모형의 비교 (Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting)

  • 최승용;한건연;김병현
    • 대한토목학회논문집
    • /
    • 제32권1B호
    • /
    • pp.9-20
    • /
    • 2012
  • 최근 수위 예측을 위한 개념적 기반, 수문학적, 물리적 기반 모형 등의 단점을 극복하고자 홍수예측을 위해 자료지향형 모형 중의 하나인 다중선형회귀 모형이 널리 도입되고 있다. 본 연구의 목적은 이러한 다중선형회귀 모형의 서로 다른 회귀계수 선정 방법에 따른 홍수예측 성능을 비교 검토하고 이를 통해 적절한 다중회귀 홍수예측 모형을 구축하는 것이다. 이를 위해 입력자료의 자기상관분석을 통해 독립변수의 시간 규모를 결정한 후 최소 자승법, 가중 최소 자승법, 단계별 선택법의 각기 다른 회귀계수 산정 방법을 이용한 홍수예측 모형을 구축하고 중랑천 유역의 다양한 홍수사상에 대해 적용하였다. 구축된 모형들의 성능을 평가하기 위해 평균제곱근오차, Nash-Suttcliffe 효율계수, 평균절대오차, 수정 결정계수와 같이 4개의 통계지표들을 사용하였다. 모의결과 단계별 선택법을 이용한 다중선형회귀 홍수예측 모형이 가장 정확한 예측 결과를 보였고, 최소자승법을 이용한 홍수예측 모형이 가중 최소자승법을 이용한 홍수예측 모형보다 좀 더 나은 예측 결과를 나타냈다.

세계 유선인터넷 서비스에 대한 확산모형의 예측력 비교 (Comparative Evaluation of Diffusion Models using Global Wireline Subscribers)

  • 민의정;임광선
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4_spc호
    • /
    • pp.403-414
    • /
    • 2014
  • Forecasting technology in economic activity is a quite intricate procedure so researchers should grasp the point of the data to use. Diffusion models have been widely used for forecasting market demand and measuring the degree of technology diffusion. However, there is a question that a model, explaining a certain market with goodness of fit, always shows good performance with markets of different conditions. The primary aim of this paper is to explore diffusion models which are frequently used by researchers, and to help readers better understanding on those models. In this study, Logistic, Gompertz and Bass models are used for forecasting Global Wireline Subscribers and the performance of models is measured by Mean Absolute Percentage Error. Logistic model shows better MAPE than the other two. A possible extension of this study may verify which model reflects characteristics of industry better.

A Study on the Comparison of Electricity Forecasting Models: Korea and China

  • Zheng, Xueyan;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.675-683
    • /
    • 2015
  • In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.

Generalized Replacement Demand Forecasting to Complement Diffusion Models

  • Chung, Kyu-Suk;Park, Sung-Joo
    • 대한산업공학회지
    • /
    • 제14권1호
    • /
    • pp.103-117
    • /
    • 1988
  • Replacement demand plays an important role to forecast the total demand of durable goods, while most of the diffusion models deal with only adoption data, namely initial purchase demand. This paper presents replacement demand forecasting models incorporating repurchase rate, multi-ownership, and dynamic product life to complement the existing diffusion models. The performance of replacement demand forecasting models are analyzed and practical guidelines for the application of the models are suggested when life distribution data or adoption data are not available.

  • PDF

Accounting for Uncertainty Propagation: Streamflow Forecasting using Multiple Climate and Hydrological Models

  • 권현한;문영일;박세훈;오태석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1388-1392
    • /
    • 2008
  • Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.

  • PDF

Forecasting value-at-risk by encompassing CAViaR models via information criteria

  • Lee, Sangyeol;Noh, Jungsik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1531-1541
    • /
    • 2013
  • This paper proposes a new method of VaR forecasting using the conditional autoregressive VaR (CAViaR) models and information criteria. Instead of using a single CAViaR model, we propose to utilize several candidate CAViaR models during a forecasting period. By adopting the Akaike and Bayesian information criteria for quantile regression, we can update not only parameter estimates but also the CAViaR specifications. We also propose extended CAViaR models with a constant location parameter. An empirical study is provided to examine the performance of the proposed method. The results suggest that our method shows more stable performance than those using a single specification.

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.

An Integrated Approach Using Change-Point Detection and Artificial neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.235-241
    • /
    • 2000
  • This article suggests integrated neural network models for the interest rate forecasting using change point detection. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in interest rate forecasting. the proposed models consist of three stages. The first stage is to detect successive change points in interest rate dataset. The second stage is to forecast change-point group with data mining classifiers. The final stage is to forecast the desired output with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. This article is then to examine the predictability of integrated neural network models for interest rate forecasting using change-point detection.

  • PDF

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.