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Abstract

This paper presents a method of improving the performance of a day-ahead 24-h load curve and
peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF)
neural network models built using the best design parameters. To improve the forecasting
accuracy, the load curve forecasted using the RBF network models is corrected by the weighted
sum of both the error of the current prediction and the change in the errors between the current
and the previous prediction. The optimal weights (called “gains” in the error correction) are
identified by differential evolution. The peak load forecasted by the RBF network models
is also corrected by combining the load curve outputs of the RBF models by linear addition
with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute
percent error (MAPE) and the sum of errors are also identified using differential evolution.
The proposed models are trained and tested using four years of hourly load data obtained from
the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE
for daily peak load and 1.128% MAPE for daily load curve.
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1. Introduction

Electrical power systems are required to be operated near their full capacity for optimally
efficient commercial use. The importance of precise peak load forecasting has increased in the
new open access operating environment of electricity supply industries in which companies
determine generation, transmission, distribution capacities, and investment as required to
reserve generation in real time. To achieve precise short-term load forecasting, various
methods including auto-regression, time-series, exponential smoothing, stochastic process,
fuzzy logic, and artificial neural networks have been utilized [1-22]. The non-stationarity of
the load forecast process, in addition to the complex relationship among variables such as
weather, economic situation, holidays, geographical locations, daylight hours, and electric
loads, renders artificial neural networks (ANNs) effective. An ANN is a very attractive
and commonly applied approach to load forecasting problems, because it has the ability to
learn and construct a complex nonlinear mapping based on a set of input and output data. A
functional relation between the variables and electrical loads is not required, because the ANN
can generate the functional relationship based on learning data. Recently, the ANN has been
utilized on its own, or combined with fuzzy logic, to perform load forecasting [1-3, 5-9, 18-22].
However, there still exist unsatisfactory forecast errors when there are rapid fluctuations in
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load and temperature.
Radial basis function (RBF) neural networks have been em-

ployed for functional approximations in time-series modeling
and in pattern classification. Because of their nonlinear ap-
proximation properties, RBF neural networks are able to model
complex mappings. These networks often require more neurons
than standard feed-forward back-propagation networks; how-
ever, they can often be designed in a fraction of the time it takes
to train back-propagation networks. These networks work best
when a large amount of training data is available. RBF neural
networks have been employed for functional approximation in
time-series modeling because of their nonlinear approximation
properties [6, 15, 19, 21, 22]. However, these studies did not
achieve a precision of less than 1.4% for the mean absolute
percent error (MAPE).

This paper presents a method that improves the accuracy of
the next-day load curve forecasting. The presented forecasting
method uses a hybrid scheme: forecasting is carried out using
RBF neural networks with the best design parameters; next,
error correction is performed. In an electricity market, the price
is set by supply and demand based on day-ahead peak load
forecasting. The cumulative forecasting error over the course
of a year gives rise to undue profits and losses to buyers and
sellers. This error necessitates the settlement of amounts at the
end of the year. This problem has not yet been considered in the
literature. In this paper, a new day-ahead peak load forecasting
method that reduces forecasting errors and their sum over the
course of a year is also proposed. Section 2 describes the vari-
ables impacting load curve. The average load forecasting errors
for holidays and the previous working day are much higher than
those for typical working days. To improve the precision of the
next-day load forecast, two different RBF neural networks with
the best design parameters and their input and output nodes are
described. Section 3 describes the error correction for both the
load curve and the peak load forecasting. In section 4, perfor-
mance evaluation is shown using a simulation; the test results
show a considerable improvement over previous methods.

2. Load Curve Forecasting Model

2.1 Variables Impacting Load Curve

The analysis of daily load and weather data helps to understand
the variables that affect load forecasting. The correlation analy-
sis is based on 3 years of data containing the daily peak load,
average load, temperature, rain, wind, humidity, sun, and cloud

Table 1. Correlation analysis between weather and load

Correlated variable p-value Pearson
correlation
coefficient

Maximum temperature vs.
peak load

0.000 -0.185

Rainfall vs. peak load 0.300 -0.027

Wind speed vs. peak load 0.724 0.009

Humidity vs. peak load 0.828 0.006

Sunlight vs. peak load 0.455 -0.020

Cloud vs. peak load 0.350 -0.024

data. The model results are given in Table 1. In this analysis,
the peak load represents the electric load curve, because the
peak load has more sharp fluctuations in magnitude. In consid-
eration of the large number of significant correlations (those
with p < 0.05) the maximum temperature is shown to be the
most influential weather variable affecting the load.

Daily electricity load demand is also influenced by whether
a day is a working day, weekend, or holiday. There exists
weekly seasonality, but the value of the load scales up and down.
The shapes of the load curves on working days and weekends
are quite similar [7, 10, 11, 13]. Therefore, the days can be
classified into distinct groups, hereinafter called day types, each
of which has common characteristics. The day types are normal
weekdays (Tuesday–Friday), Monday, Saturday, and Sunday.
Monday is different from weekdays because of the pickup load
that is seen on Monday mornings. The day types correspond
to the days of week in any given month of the year. A holiday
has a similar shape to a Sunday; consecutive holidays must be
treated separately.

2.2 RBF Neural Network Model

The most important step when building a short-term load fore-
casting model is correct selection of input variables. In practice,
there is no rule that will guarantee correct selection. Selection
mainly depends on experience; however, some statistical analy-
sis can be helpful in determining the variables that significantly
influence the load. According to the description of months
in Section 2.1, the day types and the maximum temperature
should be included in the input variables of the RBF neural
networks. It is known that the load at a given hour is dependent
not only upon the previous hour but also upon the load at the
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same hour on the previous day. Hence, the 24-h load profile
for the previous day of forecast is also included in the input
variables. The day types are defined by five binary digits, in
which each digit is either 0 or 1, depending on whether the day
is Monday, Tuesday–Friday, Saturday, or Sunday, and a holiday
or not. The day types for the next day’s forecast are also utilized
as the input variables so as to handle consecutive holidays and
the working day before them.

Two types RBF neural network models are used for 24-h-
ahead load forecasting: 24 multi-input single output (MISO)
models and multi-input multi-output (MIMO) models, here-
inafter called radial basis function neural network (RBFN)1
and RBFN2, respectively. These models use the same 44 input
nodes shown in Figure 1; their 24 output nodes are composed
of the forecasted 24 hourly load curves. The maximum value of
the load curve becomes the forecasted daily peak load. Neural
networks applied in traditional short-term forecasting use whole
similar days’ data to learn trends of similarity. The learning of
all of the similar days’ data is complex and results in relatively
large errors. Recently, similar day-based neural network meth-
ods in which only the similar day load selected by similarity
analysis is used as the input load have been applied [5, 8, 20].
However, these networks do not have satisfactory performance,
in spite of the additional computational load.

In this paper, the RBFN models utilize the entire load dataset.
The models were built and tested using the MATLAB function
“newrb.” The function iteratively creates a radial basis network,
one neuron at a time, until the maximum number of neurons
has been reached. It is important that the spread parameter be
large enough that the neurons of the transfer functions respond
to overlapping regions of the input space, but not so large that
the neurons fail to respond in the same manner. Therefore, the
maximum number of neurons and the spread for the network
are the design parameters to be determined. To reduce the
forecasting error, the best design parameters for the RBFN
models are selected using grid searches.

3. Load Forecasting with Error Correction

3.1 Load Curve Forecasting

The proposed error correction method attempts to minimize
the forecasting error by implementing two error compensation
strategies: the proportional and the derivative, as shown in
Figure 2. Proportional compensation makes a change to the
forecasting value that is proportional to the current error value.

Day 

Node number 

Month Day types MT HLP 

The previous day (1) (2)-(6) (7) (8)-(31) 

The day of 

forecast 
(32) (33)-(37) (38) 

The next day (39) (40)-(44) 

(a)

Model 
RBFN1 

(MISO model) 

RBFN1 

(MIMO model) 

Node number 1 1-24 

Output variables Hourly load 24 hourly loads 

(b)
Figure 1. Radial basis function neural network (RBFN) models (a)
input modes, (b) output nodes. MT, maximum temperature; HLP,
hourly load profile; MISO, multi-input single output; MIMO, multi-
input multi-output.

The error value is then calculated as the difference between
the real electric load and its forecasted value. Proportional
compensation is obtained by multiplying the error by a constant
called the proportional gain. A high proportional gain results
in a large change in the forecasting value for a given change in
the error. By contrast, a small gain results in a small response
to a large input error and less-sensitive compensation. The
change rate of the errors is calculated by subtracting the current
day’s forecasting error from the previous day’s forecasting error.
Derivative compensation is obtained by multiplying the rate of
change by a constant called the derivative gain. The derivative
compensation slows the rate of change of the forecasting value.

 

ORBFN:output of RBFN model
e: error = actual data – output of RBFN model
ce: error of the previous hour – error of the current hour
ORBFNEC:output of RBFN model with error correction

Figure 2. Error correction for daily load curve forecasting. RBFN,
radial basis function neural network.

41 | Heesoo Hwang



http://dx.doi.org/10.5391/IJFIS.2013.13.1.39

The error correction shown in Eq. (3) is carried out by adding
the error compensation term of Eq. (1) to the value forecasted
by the RBFN models.

eci+1
t =kp × eit+kd ×

[
ei−1
t −eit

]
(1)

Here, ec is the error compensation term, error e is defined
in Eq. (2), and subscripts t and i represent the day and hour,
respectively.

eit=Li
a,t−Li

pn,t (2)

Li
pn,t is the value forecasted by the RBFN models, and Li

a,t

is the actual load value.

Li+1
p,t =Li+1

pn,t+eci+1
t (3)

Li
p,t is the value forecasted with the error correction.

Since the magnitudes of the gains influence on the perfor-
mance of the forecasting the optimal gains minimizing the
forecasting error have to be determined. The gains that produce
the best error correction are searched using differential evolu-
tion (DE) [23]. DE is a method that optimizes a problem by
trying to improve a candidate solution iteratively, based on a
given measure of quality. DE is used for multidimensional real-
valued functions but does not use the gradient of the problem
being optimized. DE optimizes a problem by maintaining a
population of candidate solutions and creating new candidate
solutions (by combining existing ones according to its simple
formulae), and then keeping whichever candidate solution has
the best fitness for the optimization problem at hand. In this
way, the optimization problem is treated as a black box that
merely provides a measure of quality for a given candidate so-
lution; the gradient is, therefore, not needed. As the measure
of quality to evaluate the candidate solution, the MAPE of Eq.
(4) is utilized. DE is carried out to identify the gains that will
minimize the MAPE.

MAPE =
1

D

∫ D

t=1

{
1

N

∫ N

i=1

∣∣Li
a,t−Li

p,t

∣∣
Li
a,t

× 100

}
(4)

Li
a,t and Li

p,t are the actual and forecast values of the load curve,
respectively, N is the number of the hours of the day i.e., N =
24, and D is the number of the forecasted days.

 

(a)

 

(b)
Figure 3. Correcting peak load forecast (a) RBFN1 (24 44-input
and 1-output models), (b) RBFN2 (a 44-input and 24-output model).
RBFN, radial basis function neural network.

3.2 Peak Load Forecasting

An electricity market is a system for effecting purchases, through
bids to buy; sales, through offers to sell; and short-term trades.
To set the price bids and offers, supply and demand based on
day-ahead peak load forecasting is used. The forecasting error
gives rise to undue profits and losses to buyers and sellers. This
requires the settlement of amounts at the end of the year. There-
fore, reducing the sum of the forecasting errors over a year is
no less important than minimizing the individual errors.

The peak load is the maximum value of the daily load curve
forecasted by the RBFN models described in section 2. To
forecast the daily peak load more precisely, a new method for
correcting the peak load is presented. This method attempts
to reduce both the MAPE, as in Eq. (5), and the sum of errors
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(SE), as in Eq. (6). Correction is accomplished by combining
the 24-h load curve outputs linearly with 24 coefficients to the
peak load, as shown in Figure 3. The optimal coefficients that
reduce the error function, as in Eq. (7), are searched using DE.

MAPE =
1

D

∫ D

t=1

|La,t−Lp,t|
La,t

× 100 (5)

SE =

∫ D

t=1

(La,t−Lp,t) (6)

La,t and Lp,t of (5) and (6) are the actual and forecast values
of the peak load, respectively. D is the number of the forecasted
days.

E = MAPE + 0.001 · SE (7)

Using DE, the best solution, which corresponds to the 24
optimal coefficients, can be identified. As the measure of fitness
for evaluating the candidate solution, the error function in (7) is
utilized.

4. Simulation

4.1 Load Curve Forecasting

The performance of the proposed method is evaluated on the
basis of a four-year dataset provided by the Korea Power Ex-
change (KPX). Three-year data from January 2005 to December
2007 are used for learning the RBFN models and for identifying
the error correction gains. Load curve forecasting is performed
for one year of data from 2008 so as to evaluate the accuracy
of the learned models and the error correction. The best design
parameters for the RBFN models, as shown in Table 2, are
found using grid searches, which are performed over 60 to 95
neurons and 1 to 15 spread values with the grid point steps of 1
and 0.1, respectively.

Using the day types for the next day of forecast for the input
variables decreases the error considerably, as shown in Table
3. The forecast deviations from the actual values are calculated
using Eq. (4), and the maximum absolute percent error (MAP)
is calculated using Eq. (8).

MAP = max

{
1

D

∫ D

t=1

[
1

N

∫ N

i=1

∣∣Li
a,t−Li

p,t

∣∣
Li
a,t

× 100

]}
(8)

The minimum (5.8%) and maximum (39.0%) errors for
RBFN1, and the minimum (5.8%) and maximum (10.2%) errors
for RBFN2 are reduced. Figure 4 shows the forecasted result
for 8 days from Saturday to the next Monday including special

Table 2. The design parameters for the RBFN models

Model Hour Parameters

No. ofneurons Spread

RBFN1 1 92 13.7

2 91 13.2

3 92 12.8

4 82 13.2

5 91 12.5

6 84 15.3

7 82 10.5

8 82 11.5

9 76 10.8

10 88 14.6

11 65 12.4

12 77 11.8

13 93 13.8

14 77 13.5

15 70 12.3

16 78 14.3

17 77 11.9

18 72 11.1

19 90 13.1

20 75 12.0

21 91 11.3

22 86 13.9

23 67 14.9

24 65 11.0

RBFN2 1–24 74 14.8

RBFN, radial basis function neural network.

holidays. Our results indicate that the use of the next day type
is effective in predicting the load curve for the working day
before the holidays.

For the best error correction, 48 gains of 24 kp’s and 24
kd’s minimizing (4) are searched using DE. The following con-
trol parameters for differential evolution are used: population
size = 20, maximum generation number = 2000, differential
amplification factor = 0.5, and crossover rate = 0.5.

In the evolutionary process, the objective function values of
Eq. (4) decrease, as shown in Figure 5. The identified gains
for the best error correction are shown in Table 4. To demon-
strate the effectiveness of the proposed method, we applied it
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(a) (b)

(c) (d)

Figure 4. Load curve forecast for 8 days with special holidays. (a) Next day type is not used in RBFN1, (b) next day type is used in RBFN1,
(c) next day type is not used in RBFN2, (d) next day type is used in RBFN2. RBFN, radial basis function neural network.

to a section of 2008 in which all seasons under changing con-
ditions are considered. 24-h ahead load curve forecasts from
RBFNEC1 (RBFN1 with error correction) and RBFNEC2 (RB
FN2 with error correction) are shown in Figure 6. From among
the results, those for two weeks each in summer and winter
are shown in Figure 7. As shown in Table 5, error correction
reduced the MAPE of 1.156 for RBFN1 to 1.128 (by 2.42%)
and the MAPE1 of 1.234 for RBFN2 to 1.196 (by 3.08%). The
error correction contributes to reducing the comparatively large
MAPE of the RBFN models.

4.2 Peak Load Forecasting

In the evolutionary search of 24 coefficients that minimizes Eq.
(6), the following DE control parameters are used: population
size = 12, maximum generation number = 500, differential
amplification factor = 0.5, and crossover rate = 0.5. The optimal
coefficients identified by the search are given in Table 6. The
peak load forecasting errors are given in Table 7, which shows
that the correction reduces both the MAPE and SE. The peak
load forecasting results from RBFN1 and RBFN2 are shown in
Figure 8. Figure 9 shows that the correction reduces the SE by
less than one-ninth at the end of the test year.

www.ijfis.org Daily Electric Load Forecasting Based on RBF Neural Network Models | 44



International Journal of Fuzzy Logic and Intelligent Systems, vol. 13, no. 1, March 2013

(a) (b)

Figure 5. Forecast error during the evolutionary search of gains. (a) RBFNEC1, (b) RBFNEC2. RBFN, radial basis function neural network.

Table 3. Effect of day type on the next day’s forecast

Error Day type RBFN1 RBFN2

Train Test Train Test

MAPE No use 1.143 1.227 1.153 1.334

Use 1.048 1.156 1.087 1.234

MAP No use 23.74 26.00 18.56 16.43

Use 18.49 15.85 17.29 14.75

RBFN, radial basis function neural network; MAPE, mean absolute
percent error; MAP, maximum absolute percent error.

5. Conclusion

This paper presents a day-ahead load curve forecasting method
that combines the RBFN model with an error correction method.
To distinguish a similar day’s load from the remainder of the
data, the RBFN model includes the day type for the next day
in the forecast, in addition to those of the previous and the day
of forecast as its input variables. The RBFN model is designed
on the basis of the optimal number of neurons and spread,
which are found using grid searches. The proportional and
the derivative gains for the best error correction are identified
by differential evolution. The peak load obtained from the
RBFN model is also corrected by adding linear combination of
the 24-h load curve outputs and 24 coefficients to itself. The
coefficients are optimized to minimize both the MAPE and
the SE errors through DE. The experimental results show that
the RBFN model combined with the error correction method
produces accurate load curves and peak load forecasts and is
robust to weather and seasonal variations. The proposed error

Table 4. Optimal gains for the error correction

Hour RBFNEC1 RBFNEC2

kp kd kp kd

1 0.0765 0.0669 0.2194 0.0904
2 0.1312 0.0567 0.2011 0.0861
3 0.0983 0.0547 0.1741 0.0932
4 0.0579 -0.0034 0.1911 0.0872
5 -0.0043 0.0160 0.1154 0.0592
6 -0.0250 0.0669 0.0369 0.0525
7 0.0427 0.0548 0.0107 0.0263
8 0.0958 0.0650 0.1251 0.0722
9 0.1607 0.0828 0.1485 0.0720
10 0.1438 0.0778 0.1864 0.0703
11 0.1162 0.0984 0.1232 0.0522
12 0.1067 0.0965 0.1171 0.0572
13 0.0690 0.0676 0.0921 0.0717
14 0.1093 0.0478 0.0905 0.0429
15 0.1073 0.0702 0.0551 -0.0011
16 0.1343 0.0419 0.0745 0.0110
17 0.1055 0.0351 0.0294 0.0048
18 0.0385 0.0125 -0.0164 0.0075
19 0.0045 0.0018 0.0351 0.0218
20 0.0949 0.0613 0.0055 -0.0032
21 -0.0455 -0.0074 0.0121 -0.0009
22 -0.0407 -0.0430 -0.0736 -0.0357
23 -0.0038 -0.0182 0.0015 -0.0138
24 0.0040 -0.0041 -0.0528 -0.0321

RBFN, radial basis function neural network.
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(a) (b)

Figure 6. Day-ahead load curve forecasts used for the evaluation. (a) RBFNEC1, (b) RBFNEC2. RBFN, radial basis function neural network.

(a) (b)

(c) (d)

Figure 7. Day-ahead load curve forecasts. (a) RBFNEC1 during summer, (b) RBFNEC1 during winter, (c) RBFNEC2 during summer, (d)
RBFNEC2 during winter. RBFN, radial basis function neural network.
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Table 5. Error correction results

Model 2 weeks in
summer

2 weeks in
winter

One year,
2008

MAPE MAPE MAPE

RBFN1 0.953 1.506 1.156

RBFNEC1 0.944 1.441 1.128

RBFN2 1.116 1.792 1.234

RBFNEC2 1.111 1.677 1.196

MAPE, mean absolute percent error; RBFN, radial basis function
neural network.

Table 6. Identified optimal coefficients

Hour Coefficients Hour Coefficients

1 0.00000 13 -0.09646

2 -0.02435 14 0.03366

3 0.08034 15 0.08912

4 -0.04485 16 -0.06163

5 0.09499 17 0.04964

6 0.07560 18 -0.06096

7 -0.10000 19 0.10000

8 0.04772 20 -0.00846

9 -0.01569 21 0.04520

10 -0.00854 22 0.00041

11 -0.09785 23 -0.07906

12 0.09780 24 -0.10000

correction method is amenable to real-time implementation
with hourly or daily gains to adapt and update based on the
changing conditions.
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