• 제목/요약/키워드: force-vibration test

검색결과 410건 처리시간 0.029초

센서 동역학을 고려한 충격응답해석 (Analysis of Impact Responses Considering Sensor Dynamics)

  • 류봉조;권병희;안길영;오일성;이규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.731-736
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems . Since the real impact force and acceleration at the contact surface are measured indirectly through the sensors, the measured outputs can be a little different from the real impact responses. In this study, the contact force model based on the Hertz law is proposed in order to predict the impact force correctly. To investigate the influence of the position of the sensor attached to the impacting bodies, the two kinds of sensors were used. Finally, the contact force model obtained by drop test was applied to predict the impact force between the moving part and the stopper in magnetic contactor.

  • PDF

PVC 바닥 마감재와 아이들 매트의 바닥 충격음 및 충격력 저감 (The Reduction of Floor Impact Noise and Impact Force Level of PVC Vinyl Floor coverings and Mats for Children)

  • 문대호;박홍근;송국곤;이철승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.425-430
    • /
    • 2014
  • Floor coverings and Mats are for children are economical and has excellent workability, as well as they can reduce floor impact noise effective. "When these floorings contact to impact source, they are deformed and change impact force characteristics that strikes floor structure. It is important to measure the impact force spectrum of floorings in order to evaluate reduction of floor impact noise for floorings. In experimental test of floor impact noise and impact force for 14 PVC vinyl floor coverings and 16 mats for children, we confirmed that the impact force spectrum directly related to the floor impact noise spectrum.

  • PDF

대변위-고정밀 위치제어를 위한 자기변형 self-moving cell 선형모터 (Magentostrictive self-moving cell linear motor for displacement control with large force and high resolution)

  • 두재균;김재환;최승복;박홍근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.249-255
    • /
    • 2000
  • The design and test of an magnetostrictive linear motor(MLM) that operates based on self-moving cell concept is presented. The moving cell is composed of Terfenol-D linear actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses the stroke of Terfenol-D actuators and friction force of the cells, it can essentially produce long stroke and large force. The overall performance of the MLM was measured in terms of speed and force. The pushing force is directly related with the friction force. This work is a proof-of-concept stage and investigation is necessary for realistic application.

  • PDF

경사 종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향 (Effects of Crack on Stability of Timoshenko Beams Subjected to Subtangential Follower Force)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1327-1334
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability of cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the instability(critical follower force of flutter and divergence) of a cracked beam as slenderness ratio and subtangential coefficient is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked beam subjected to subtangential follower force.

Design of tall residential buildings in Singapore for wind effects

  • Balendra, T.;Ma, Z.;Tan, C.L.
    • Wind and Structures
    • /
    • 제6권3호
    • /
    • pp.221-248
    • /
    • 2003
  • The design of high-rise building is often influenced by wind-induced motions such as accelerations and lateral deflections. Consequently, the building's structural stiffness and dynamic (vibration periods and damping) properties become important parameters in the determination of such motions. The approximate methods and empirical expressions used to quantify these parameters at the design phase tend to yield values significantly different from each other. In view of this, there is a need to examine how actual buildings in the field respond to dynamic wind loading in order to ascertain a more realistic model for the dynamic behavior of buildings. This paper describes the findings from full-scale measurements of the wind-induced response of typical high-rise buildings in Singapore, and recommends an empirical forecast model for periods of vibration of typical buildings in Singapore, an appropriate computer model for determining the periods of vibration, and appropriate expressions which relate the wind speed to accelerations in buildings based on wind tunnel force balance model test and field results.

실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험 (Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure)

  • 허재성;박은천;이상현;이성경;민경원;김홍진;조지성;조봉호;주석준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.449-457
    • /
    • 2008
  • In this paper, a tuned liquid1) mass damper(TLMD) was proposed and experimentally investigated on its control performance, which can control bi-axial responses of building structures by using only one device. The proposed TLMD controls the structural response in a specific one direction by using a liquid sloshing of TLCD. Also, the TLMD reduces the response of structures in the other orthogonal direction by behaving as a TMD that uses mass of the container itself and liquid within container of TLCD installed on linear motion guides. Force-vibration tests on a real-sized structure installed with the TLMD were performed to verify its independent behavior in two orthogonal directions. Test results showed that the responses of a structure were considerably reduced by using the proposed TLMD and its usefulness for structural control in two orthogonal directions.

  • PDF

Acceleration-based fuzzy sliding mode control for high-rise structures with hybrid mass damper

  • Zhenfeng Lai;Yanhui Liu;Dongfan Ye;Ping Tan;Fulin Zhou
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.431-447
    • /
    • 2024
  • The Hybrid Mass Damper (HMD) has proven effective in mitigating vibrations in high-rise structures subject to seismic and wind-induced excitations. One derivative configuration of the HMD mounts an Active Mass Damper (AMD) atop a Tuned Mass Damper (TMD). However, the control efficacy of such HMDs may be compromised when confronted with loads that exceed their design parameters. Additionally, the confined structural space within high-rise structures often limits the feasibility and economic viability of retrofitting HMD systems. This study introduces an Acceleration-based Fuzzy Power Approach Rate Sliding Mode Control (AFP-SMC) algorithm aimed at enhancing the control efficacy of HMDs while minimizing their stroke and force output requirements. Employing the Canton Tower as a research prototype, an analytical model incorporating HMDs was established, and a comparative analysis between the AFP-SMC and Linear Quadratic Gaussian (LQG) control algorithms was conducted for efficacy. The control performance of the AFP-SMC control algorithm under different control parameter variations was investigated. Furthermore, by experimentally assessing the AMD subsystem within the Canton Tower, friction and ripple force formulas were derived to bolster the analytical model, thereby validating the robustness of the AFP-SMC algorithm. The results show that the proposed AFP-SMC algorithm effectively reduces the vibration response of the structure and the stroke and control force output of HMDs, and exhibits superior overall control performance and robustness compared to the LQG algorithm.

ER 댐퍼의 밸브 형상에 따른 감쇠 특성의 해석 및 실험 (An Analysis and Test Results of Damping Characteristics of ER Dampers with Two Different Valve Types)

  • 장보영;이종민;김창호;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.608-613
    • /
    • 1998
  • Damping characteristics of ER dampers and flow rates inside ER valve with two different valve types were analyzed and compared with test results. Fluid flow inside ER valves was modeled by Bingham plastic model and Hagen-Poiseulli flow, while the equations of motion of total ER damper system were modeled by flow and hydraulic force balance. A general straight valve case was compared with a bended valve case which is newly tested for a possible improvement of ER damping force. As expected, the bended ER valve generates higher damping force and lower flow rates than the conventional straight ER valve due to additional flow restriction at the bended section. Analytical models of ER valve and ER damper generally predict reasonable performance characteristics of tested results. Therefore, developed analysis can be used for designing new ER dampers and simulation of ER semi-active suspension system as well.

  • PDF

캣워크 구조물의 공기역학적 특성 (Aerodynamic Characteristics of Catwalk Structures)

  • 이승호;이한규;권순덕;김종화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2011
  • Catwalk structures are temporary walk ways for erection of main cables in suspension bridge. The aerodynamic characteristics of the catwalk structures are not well studied even though the catwalk structures are sensitive to wind action because of its flexibility. Present study demonstrates technical results obtained from wind tunnel tests of various catwalk structures. To obtain the aerostatic force coefficients of the floor system of catwalk, 1/14 and 1/4 scaled partial rigid models were fabricated and tested at the wind tunnel. In order to investigate the Reynolds number effects, the aerostatic force coefficients were measured at various wind velocities ranged from 5m/s to 30m/s. The test results revealed that the Reynolds number effects on aerostatic coefficients were not significant for the catwalk floor systems. An empirical equation for aerostatic force coefficients of catwalk are proposed based on the measured results.

  • PDF

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.