• 제목/요약/키워드: force system

검색결과 7,912건 처리시간 0.03초

손가락 힘측정장치의 3축 힘센서 설계 (Design of a Three-Axis Force Sensor for Finger Force Measuring System)

  • 이경준;김갑순
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.110-115
    • /
    • 2016
  • This paper describes the design and fabrication of a three-axis force sensor with three parallel plate structures(PPSs) for measuring force in a finger force measuring system for a spherical object catch. The three-axis force sensor is composed of a Fx force sensor, Fy force sensor and a Fz force sensor, and the elements of Fx force sensor and Fy force sensor are a parallel plate structure(PPS) respectively and Fz force sensor is two PPS. The three-axis force sensor was designed using FEM(Finite Element Method), and manufactured using strain-gages. The characteristics test of the three-axis force sensor was carried out. As a test results, the interference error of the three-axis force sensor was less than 1.32%, the repeatability error of each sensor was less than 0.04%, and the non-linearity was less than 0.04%.

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

DSP 를 이용한 로봇의 그리퍼 제어장치의 개발 (Development of the Robot's Gripper Control System using DSP)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.

가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발 (Development of Ultrasonic Machine with Force Controlled Position Servo System)

  • 장인배;이승범;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

한국형 고속전철 집전장치 접촉력 계측에 관한 연구 (A Study on the Measurement of Contact Force of Pantograph of Korean High Speed Train)

  • 서승일;조용현;박춘수;목진용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1453-1457
    • /
    • 2003
  • The pantograph for Korean High Speed Train was developed by home-grown technology. In this study, a system to measure the contact force of pantograph is developed and installed on the prototype high speed train, Contact force prevents the pantograph from separating from the catenary. However, excessive contact force causes rapid erosion of catenary. The contact force can be divided into lift force and spring force. Contact force measurement is conducted while the train runs on the test track. The lift force is measured by the load cell on the roof separately and combined with the spring force of pan-head to form the contact force. Measured results show that the contact force of the pantograph of Korean High Speed Train is below the upper limit regulated by the high speed train standards. The contact force measuring system provides data to evaluate safety of the catenary system.

  • PDF

스마트폰 곡면유리 성형시스템의 가압장치 설계 및 곡면유리 성형특성실험 (Design of a Force Applying System for a Smart-phone Curved Glass Molding System and Its Characteristic Test)

  • 김현민;홍태경;정동연;이연형;박재현;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.570-577
    • /
    • 2014
  • This paper describes the design of a force applying system for a smart phone curved glass molding system and its characteristic test. The force applying system is composed of a motor and gear, a rectilinear movement structure, a force sensor, an LVDT (Linear Variable Differential Transformer) sensor, an up and down moving block, and so on. The system precisely controls the applying force and time to the plane glass because the glass can be easily destroyed under applied force, and can be bent imperfectly. As a result of the characteristic test, the curved glass can be manufactured using this system, and the holding time under 0N force, the applying force to the plane glass, the time for applying from 0N to maximum force, and the holding time under maximum force at the manufacture feasible temperature $620^{\circ}C$ were found.

단축 힘센서를 이용한 두 손가락 잡기 힘측정장치 개발 및 특성평가 (Development of Two-Finger Force Measuring System to Measure Two-Finger Gripping Force and Its Characteristic Evaluation)

  • 김현민;신희석;윤정원;김갑순
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.172-177
    • /
    • 2011
  • Finger patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers(thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). At present, most hospitals have used a thin plastic-plate for measuring the two-finger grasping force, and we can only judge that they can grasp the plate with their two-finger through it, because the plate can't measure the two-finger grasping force. But, recently, the force measuring system for measuring two-finger grasping force was developed using three-axis force sensor, but it is very expensive, because it has a three-axis force sensor. In this paper, two-finger force measuring system with a one-axis force sensor which can measure two-finger grasping force was developed. The one-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP(Digital Signal Processing). Also, the grasping force test of men was performed using the developed two-finger force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods, and the system can be used for measuring two-finger grasping force.

고탄성 고분해능을 갖는 응착력 측정장치의 개발 (Development of Adhesion Force Measurement Apparatus with High Stiffness and High Resolution)

  • 김규성;윤준호
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.140-146
    • /
    • 2007
  • To understand adhesive phenomena, we need to get force curve between two surfaces. And it is said that high stiffness force analysis system is needed to get precise force curve and more information of the surfaces. Usually the stiffness of the force measurement system is under the order of 10N/m. The stiffer force measurement system, however, results in more information on the surface, because higher stiffness lead to the wider range of force curves, secondly because the force curve obtained through the stiffer one describes more precise relationship between relative tip-sample separation and interaction force. In this paper, considering for stiffness and resolution, the cantilever was designed and we made adhesion force measurement apparatus with high stiffness and high resolution, so we measured adhesive force between Ag-ball and wafer.

밀링가공의 절삭조건 검증시스템 개발

  • 김찬봉;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.428-433
    • /
    • 1993
  • In this paper, the fast algorithm to calculate cutting force of milling and its application to NC verification system have been studied. The fast force algorithm can calculate the maximum cutting force fastly during one revelotion of tool. The NC verification using the fast force algorithm can verify excessive cutting force which is the cause of deflection and breakage of tool, and can so adjust the feed rate as to manufacture with the maximum force criterion or maximum machining error criterion. So, the fast force algorithm has been added to the NC verification system, the NC verification system can verify the physical problems in NC code effectively.

  • PDF

6 축 힘/모멘트센서를 이용한 구물체 잡기 손가락 힘측정장치 개발 (Development of Finger-force Measuring System with Six-axis Force/moment Sensor for Measuring a Spherical-object Grasping Force)

  • 김현민;윤정원;신희석;김갑순
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.37-45
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the used object in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a six-axis force/moment sensor which can measure the spherical-object grasping force is developed. The six-axis force/moment sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (digital signal processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120N.