• Title/Summary/Keyword: force formulation

Search Result 368, Processing Time 0.024 seconds

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Exploring the Relationship between the Kinetic Energy and Intensity of Rainfall in Sangju, Korea

  • Van, Linh Nguyen;Le, Xuan-Hien;Yeon, Minho;Thi, Tuyet-May Do;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.151-151
    • /
    • 2022
  • The impact of raindrops on the soil surface causes soil detachment, which may be estimated by measuring the kinetic energy (KE) of the raindrops. Since direct measurements of rainfall force on ground surfaces are not generally available, empirical equations are an alternative option to estimate KE from rainfall intensity (I), which has the greatest influence over soil erosion and is easily accessible. Establishing the optimal formulation for the relationship between kinetic energy and rainfall intensity has proven to be difficult. Thus, this research considered thirty-seven rainfall events observed from June 2020 to December 2021 using a laster optical disdrometer erected in Kyungpook National University to examine the characteristics of KE-I relationships. We concentrated our discussion on the formation of two different expressions of the KE, including KE expenditure (KEexp) and KE content (KEcon). The following conclusions were drawn: (1) We employed statistical analysis to demonstrate that the KEexp is more suitable expression for establishing an empirical rule between KE and I than the KEcon. (2) A power-law model was used to find the best correlation between KEexp-I relationship, whereas the best match between KEcon and I were found using an exponential equation.

  • PDF

Efficiency of CFT column plastic design approach for frame structures subjected to horizontal forces

  • SeongHun Kim;Hyo-Gyoung Kwak
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.527-541
    • /
    • 2023
  • This paper emphasizes the use of CFT columns in frame structures subjected to strong horizontal forces and shows that the efficiency of using CFT columns is increased when the plastic design approach is adopted. Because the plastic design approach is based on redistribution of the force of the internal member, a double node for the rotational degrees of freedom, where the adjacent two rotational degrees of freedom can be connected by a non-dimensional spring element, is designed and implemented into the formulation. In addition, an accompanying criterion is considered in order to make it possible to describe the continuous moment redistribution in members connected to a nodal point up to a complete plastic state. The efficiency of CFT columns is reviewed in comparison with RC columns in terms of the cost and the resistance capacity, as defined by a P-M interaction diagram. Three representative frame structures are considered and the obtained results show that the most efficient and economical design can be expected when the use of CFT columns is considered on the basis of the plastic design, especially when a frame structure is subjected to significant horizontal forces, as in a high-rise building.

Size-dependent nonlinear pull-in instability of a bi-directional functionally graded microbeam

  • Rahim Vesal;Ahad Amiri
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.501-513
    • /
    • 2024
  • Two-directional functionally graded materials (2D-FGMs) show extraordinary physical properties which makes them ideal candidates for designing smart micro-switches. Pull-in instability is one of the most critical challenges in the design of electrostatically-actuated microswitches. The present research aims to bridge the gap in the static pull-in instability analysis of microswitches composed of 2D-FGM. Euler-Bernoulli beam theory with geometrical nonlinearity effect (i.e. von-Karman nonlinearity) in conjunction with the modified couple stress theory (MCST) are employed for mathematical formulation. The micro-switch is subjected to electrostatic actuation with fringing field effect and Casimir force. Hamilton's principle is utilized to derive the governing equations of the system and corresponding boundary conditions. Due to the extreme nonlinear coupling of the governing equations and boundary conditions as well as the existence of terms with variable coefficients, it was difficult to solve the obtained equations analytically. Therefore, differential quadrature method (DQM) is hired to discretize the obtained nonlinear coupled equations and non-classical boundary conditions. The result is a system of nonlinear coupled algebraic equations, which are solved via Newton-Raphson method. A parametric study is then implemented for clamped-clamped and cantilever switches to explore the static pull-in response of the system. The influences of the FG indexes in two directions, length scale parameter, and initial gap are discussed in detail.

Effect of Additives on the Physicochemical Properties of Acetaminophen Liquid Suppository (아세트아미노펜 액상좌제의 물리화학적 특성에 미치는 첨가제의 영향)

  • Choi, Han-Gon;Jung, Jae-Hee;Ryu, Jei-Man;Lee, Mi-Kyung;Kim, In-Sook;Lee, Beom-Jin;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.290-295
    • /
    • 1998
  • To optimize the formulation of acetaminophen liquid suppository, the effect of additives on the physicochemical properties of liquid suppository base was investigated. The physi cochemical properties of P 407/P 188 (15/15%) (abbreviated in 15/15) and P 407/P l88 (15/20%) (abbreviated in 15/20) were measured after the addition of following additives; 2.5% acetaminophen as an active ingredient, vehicle components (5% ethanol, 5% propylene glycol, 5% glycerin), preservatives (0.1% sodium benzoate, 0,1% methylparahydroxybenzoate, 0.1% propylparahydroxybenzoate) and 1% of sodium chloride as an ionic strength controlling agent. Poloxamer gel was prepared with three different buffer solutions (pH 1.2, 4.0 and 6.8) and the physicochemical properties, gelation temperature, gel strength and bioadhesive force, were determined. In the results, the effect of additives on the physicochemical properties was dependent on their bonding capacities including hydrogen bonding and cross-linking bonding. Because the hydrogen-bonding capacities of acetaminophen, ethanol and propylene glycol were smaller than that of poloxamer, the binding force of poloxamer gel became weak by their putting in between poloxamer gel. Therefore, the gelation temperature (15/15, $35.7^{\circ}C$ vs 37.0, 39.4 $38.2^{\circ}C$; 15/20, $29.2^{\circ}C$ vs 31.2, 32.0, $30.3^{\circ}C$) increased, and gel strength (15/15, 4.03 see vs 2.72, 2.08, 3.12sec; 15/20, 300g vs 50, 50, 200g) and bioadhesive force (15/15, $6.8{\times}10^2\;dyne/cm^2$ vs 3.2, 6.0, $6.0{\times}10^2\;dyne/cm^2$; 15/20, $97.3{\times}10^2\;dyne/cm^2$ vs 11.1, 89.5, $92.0{\times}10^2\;dyne/cm^2$) decreased. Furthermore, the binding force of poloxamer gel became strong due to the hydrogen-bonding capacities of glycerin and the cross-liking bonding of sodium salt. Then, the gelation temperature (15/15, 35.0, $32.1^{\circ}C$; 15/20, 26.0, $21.0^{\circ}C$) decreased, and gel strength (15/15, 6.51 see, 300g; 15/20, 500, 650g) and bioadhesive force (15/15, 7.2, $81.6{\times}10^2\;dyne/cm^2$; 15/20, 112.3, $309.2{\times}10^2\;dyne/cm^2$) increased. The effect of pH on the physicochemical properties of poloxamer gel was dependent on the ingredients with which the buffer solutions were prepared. Poloxamer gels prepared with pH 1.2 and 4.0 buffer solutions had the increasing gelation temperature (15/15, 37.5, $38.1^{\circ}C$; 15/20, 33.1, $34.0^{\circ}C$) and the decreasing gel strength (15/15, 2.98, 3.81sec; 15/20, 200, 200g) and bioadhesive force (15/15, $7.0{\times}10^2dyne/cm^2$; 15/20, $74.0{\sim}88.1{\times}10^2dyne/cm^2$) owing to HCl. Poloxamer gel prepared with pH 6.8 buffer solutions had the decreasing gelation temperature (15/15, $27.2^{\circ}C$; 15/20, $22.3^{\circ}C$) and the increasing gel strength (15/15, 400g; 15/20, 550g) and bioadhesive force (15/15, $207.0{\times}10^2dyne/cm^2$; 15/20, $215.0{\times}10^2dyne/cm^2$) due to the cross-linking bonding of $NaH_2PO_4\;and\;K_2HPO_4$.

  • PDF

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading (파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석)

  • Kwon Jang Sub;Paik In Yeol;Park Jung Il;Chang Sung Pil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.138-148
    • /
    • 2005
  • Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

Variability in the Effective Spatial Range of the Population Centripetal Force of CBD (도심 인구구심력의 유효범위 변동성 측정)

  • Nam, Kwang-Woo;Kang, In-Joo;Im, Doo-Hyeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.120-131
    • /
    • 2009
  • This study measured the centripetal force and effective scope of the population spread from urban center and subcenters in order to diagnose the urban spatial structure of the formation of a multicentric city structure in Busan. The study analyzed the variability of the determination coefficient value (R square) with a negative exponential function derived from the population density model by extending the circular region into 5-km units. The aim of this study was to measure changes in the effective scope of the population centripetal force of the urban center and subcenter in 5-year intervals from 1995 to 2005 using census data. The explanatory adequacy of the population density function was examined with the bias of the function to calculate the distance error between the real location of the urban center and the optimal location, according to the population density function. To summarize the results, the value for the area of Jungangdong showed a continuous reduction, whereas Seomyeon (Bujeondong) maintained explanatory adequacy without a large change. As a whole, Busan was in the process of continuous diversification, in spite of its reduced population. Therefore, it appears necessary to strengthen the function of the urban center and subcenter and to supply adequate dwelling zones close to downtown to form a more efficient urban spatial structure. The results of the present study will be utilized as basic data for the formulation of a political approach to the efficient reorganization of spatial structure by correlating concrete spatial information with the population variability of Busan's urban center and subcenter.

  • PDF

Quality Characteristics of Replacing Pork Hind Leg with Pork Head Meat for Hamburger Patties (돈육 후지를 머리고기로 대체한 햄버거 패티의 품질 특성)

  • Choi, Yun-Sang;Jeon, Ki-Hong;Ku, Su-Kyung;Sung, Jung-Min;Choi, Hyun-Wook;Seo, Dong-Ho;Kim, Cheon-Jei;Kim, Young-Boong
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • The effects of reducing pork hind legs concentrations from 80% to 60% and replacing the pork head meat with up to 20% pork head meat were investigated based on chemical composition, cooking characteristics, physicochemical properties, shear force, and sensory characteristics of hamburger patties. The increasing the pork head levels from 0% to 20% increased the protein content, pH, reduction in diameter, reduction in thickness, and shear force of hamburger patties, but decreased the moisture content, lightness, redness, yellowness, cooking yield, and water holding capacity of hamburger patties. The fat and ash contents of the hamburger patties with different amounts of pork hind legs and pork head showed no significantly different sensory characteristics from the control and all the treatments (p>0.05). The hamburger patties with increasing pork head levels had lower color, flavor, juiciness, and overall acceptability scores, but the overall acceptability of control showed similar trends to T1 and T2. Therefore, replacing pork hind legs with pork head meat in the formulation was successfully similar to control hamburger patties, with best results obtainedon replacing up to 10% pork head meat.

Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion (계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델)

  • 박주영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.589-600
    • /
    • 2002
  • Deformable models offer an attractive approach for extracting three-dimensional boundary structures from volumetric images. However, conventional deformable models have three major limitations - sensitive to initial condition, difficult to represent complex boundaries with severe object concavities and protrusions, and self-intersective between model elements. This paper proposes a deformable model that is effective to extract geometrically complex boundary surfaces by improving away the limitations of conventional deformable models. First, the proposed deformable model resamples its elements hierarchically based on volume image pyramid. The hierarchical resampling overcomes sensitivity to initialization by extracting the boundaries of objects in a multiscale scheme and enhances geometric flexibility to be well adapted to complex image features by refining and regularizing the size of model elements based on voxel size. Second, the physics-based formulation of our model integrates conventional internal and external forces, as well as a non-self-intersecting force. The non-self-intersecting force effectively prevents collision or crossing over between non-neighboring model elements by pushing each other apart if they are closer than a limited distance. We show that the proposed model successively extracts the complex boundaries including severe concavities and protrusions, neither depending on initial position nor causing self-intersection, through the experiments on several computer-generated volume images and brain MR volume images.

Two Dimensional Flexible Body Response of Very Large Floating Structures (거대 부체구조물의 2차원 유연체 해석 및 거동)

  • Namseeg Hong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.274-286
    • /
    • 1996
  • Two-dimensional flexible body analysis (hydroelasticity theory) is adopted to a very large floating structure that may be multimodule and extend in the longitudinal direction. The boundary-element method (BEM) and Green function method(GFM) are used to obtain the hydrodynamic coefficients. The structure is considered to be a flexible beam responding to waves in the vertical direction and a consistent formulation for the hydrostatic stiffness is derived. The resulting coupled equations of motion are solved directly. Two designs of the module connectors are considered: a rotationally-flexible hinge connector, and a rotationally-rigid connector Numerical examples are presented to an integrated system of semi-submersibles. The analysis provides basic motions and section forces, which are useful to develop an understanding of the fundamental modes of displacement and force amplitudes for which multi-module VLFSs must be designed. The results show that while the hinge connectors result in greater motion, the rigid connectors increase substantially the sectional moments.

  • PDF