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Two Dimensional Flexible Body Response of Very Large Floating Structures
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Absract[_] Two-dimensional flexible body analysis (hydroelasticity theory) is adopted to a very large floating
structure that may be multimodule and extend in the longitudinal direction. The boundary-element method
(BEM) and Green function method(GFM) are used to obtain the hydrodynamic coefficients. The structure is
considered to be a flexible beam responding to waves in the vertical direction and a consistent formulation for
the hydrostatic stiffness is derived. The resulting coupled equations of motion are solved directly. Two designs
of the module connectors are considered: a rotationally-flexible hinge connector, and a rotationally-rigid
connector. Numerical examples are presented to an integrated system of semi-submersibles. The analysis
provides basic motions and section forces, which are useful to develop an understanding of the fundamental
modes of displacement and force amplitudes for which multi-module VLFSs must be designed. The results
show that while the hinge connectors result in greater motion, the rigid connectors increase substantially the

sectional moments.
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1. INTRODUCTION

Very Large Floating Structures (VLFSs) have been
proposed for a number of applications: airports, runways,
military bases, wave power generation, deep ocean
mining, industrial facilities, and entire floating cities(Seidl,
1973; St. Denis, 1974). Nearshore applications are
frequently motivated by a desire to extend the available
surface area near the centers of coastal urban areas. A
typical example is the floating airport, such as the one
considered for the city of San Diego (USD, 1990) as an

alternative to a more distant inland airport. Open ocean
applications would provide a stable platform for functions
which are best carried out in geographic areas far from
any land mass.

VLFSs will be of a scale never before constructed in a
marine environment. Perhaps the largest floating
structures constructed to date are floating bridges, such as
the inland Hood Canal bridge, which was approximately
2000 m long but only 15m wide (Hartz, 1981). A
floating airport, on the other hand, would be at least as

long, several hundred meters wide, and located in an
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exposed ocean environment. However, the basic tech-
nology required for their construction may be available,
because it is likely that a large class of VLFSs will
consist of multiple, conventional-sized modules connec-
ted together. Due to the size and possible multimodule
configuration, the design of such a structure and the
analysis of its behavior in waves may be different from
those of existing floating structures. The primary concerns
are those of wave loading and response of a VLFS in
regular waves. In this paper, a method is presented for
predicting the loading and response of a VLFS in regular
waves.

The system to be analyzed has the configuration
shown in Fig. 1. The platform is composed of several
modules connected in longitude direction. Each module
consists in a deck, 100 by 100 m in extent, supported
by a column near each corner; each longitudinal pair of
columns is, in turn, supported by a pontoon; the pon-
toons and the decks are mutually connected in vertical
shear and bending. The system is not moored, but is
considered to remain stationary in location.

The system can be modeled in two ways. In the first
model, the longitudinal sequence of modules is consid-
ered as a single beam having varying shear and
flexural rigidities. With such a model, the response of
the system to wave excitation is analyzed by a two-
dimensional hydroelastic theory that considers mutual
interaction among inertia, hydrodynamic and elastic
forces(Heller and Abramson, 1959). In the second mo-
del, the modules are considered to be rigid, that is
undeformable by the wave loading; they respond to
waves as a sequence of rigid modules flexibly connec-
ted (RMFC). Such a model is valid only if the defor-
mation, that is, the vibrations, of the modules under
wave loading are so small that they do not affect such
loading. Once the wave loading and oscillatory respo-
nse of the system have been determined, each module
can then be considered to be an isolated body for the
calculation of the elastic stresses in flexure and shear.
Both methods are employed herein and their relative
efficiency is discussed.

The boundary-element method (BEM) and Green

function method (GFM) are used to obtain the hydro-
dynamic coefficients. Numerical results are given for

illustration.
2. HYDRODYNAMIC FORCES

Strip theory has proved to be a good approach for
estimating the fluid action on a slender body (Bishop
and Price, 1979; lee et al., 1971; Geritsma and
Beukelman, 1964). The theory is based on the
assumption that the disturbance of the fluid caused by
the motion of the body does not generate the secondary
fluid motion. This assumption gives a reasonable
approximation if L>>B and L>>D, where L, B and D
are the length, beam and draft of the structure,
respectively. According to the revised strip theory of
Flokstra(1974), the vertical force Z, in the absence of

forward speed, is given by
. 3 B
Z(x,t)=—§t— |:m(x)+LwN(x)]E[w(x,t)—g(x,t)}

~pgB ) [wix, )~ Tte, )] M

where {(x,t) is the wave elevation modified for the
Smith effect, that is

o, t)=Sm(x){(x,0,1)
Su(x)=1-k[" explkz)dz @)

where {(x, y, f) is the actual wave elevation, and k=
«*/g=21/) is the wave number. The integral is over the
wetted half contour C(x) (see Fig. 2). Here, only the
case of head seas, that is, x=180 deg, is considered.

The hydrodynamic mass and damping coefficients in
heave, m(x) and N(x), defined in (1), are obtained by
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Fig. 2. Immersed contours of two sections: one with colu-
mns and pontoons.

solving the two-dimensional radiation problem of an
infinitely long cylinder, whose cross-sectional contour
is C(x), oscillating with unit amplitude and frequency

o on the water surface. These coefficients are given by
m(x)=—pR{IC(,) ¢(v,2)n3dC},

N(x)= a)pI{IC(x)ﬂy,z)n3 dC} ©)

where n; is the component of the unit normal vector
of the contour C(x) in the z-direction, and R and [/
denote the real and imaginary parts of the integrals,
respectively. The velocity potential ¢ must satisfy the

following equations:

% + % =0 (within the fluid domain) (4a)
s 22 —0 (on 2=
— ¢ +g—— =0 (on z=0) (4b)
oz

X oy (on ) (40)
on

i 29 _

; _1{1 5 0 (on the sea floor) (4d)

In addition, the two-dimensional radiation condition
needs to be satisfied at infinite distances from the

contour C. This condition is stated by

Yoo

lim (gy—‘p Fik ¢] =0 (on Cx, UCy) 5)

It guarantees the uniqueness of the solution. Physically

2
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Fig. 3. Sketch for boundary integral formulation.

speaking, it ensures that the generated waves radiate
outward, and die out infinitely far from the source of the
disturbance.

In this study, both the BEM and the GFM are
adopted to solve ¢. Specially for the case of hull

structures, these two methods are shown to be efficient.

2.1 Boundary-Element Method

The boundary element method (Brebbia, 1978; Andres,
1986) is applied here to obtain the hydrodynamic coef-
ficients. The two-dimensional radiation problem can be
solved by making use of Green's second identity. It

results that
_ [ [$9CG _g9¢
[ @VG -6vrgyaa=|. [4; =G ]dC (©)

where ¢ and G are functions that have continuous first
derivatives in the closed regular region €, which is
bounded by the curve, C;, and where 9/dn is the
derivative in the direction of the unit normal vector;
see Fig. 3.

Upon selecting the Green function G as the solution
corresponding to a point source, the above equation
can be reduced to an integral equation over the whole
boundary C;. For a two-dimensional problem, the fun-

damental solution of Laplace's equation is

G(P,Q)=%1n[ly) @)

where
Y= a(y—é)z(z—{)z,P=P(y,z), Q=Q(§’C)

In this case G(P, Q) satisfies Laplace's equation ev-
erywhere except at Q, where the point source is located.
Upon combining the conditions in equations (4b), (4c),
(4d), (5) and substituting G(P, Q) into (6), the follo-
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wing boundary integral equation is obtained:

ROk
o [0 s 1]
a5 (i)

+l ¢% (mlyJ dc @®)

where C, Cg,, Cr, Cs, C, are the boundaries of the
body, and at far right, far left, free surface, and bottom,
respectively.

To solve this integral equation, the boundary of the
whole domain is subdivided into elements. The values
of G(P, () and dG/0n at the center of each element
are then derived and introduced in (8). A matrix of
linear equations is thus obtained. The node value of the
potential is calculated from the resulting system of

linear algebraic equations.

2.2 Green Function Method

The Green function method (Frank, 1967, Garrison,
1984) is applied to estimate the added-mass and damping
coefficients. This method requires less computational
time but a greater mathematical treatment than does the
alternative BEM. The two-dimensional GFM, which was
first applied by Frank, is recalled for convenience.

The solution of the radiation problem is assumed to
be represented by a distribution of singularities over the
immersed sectional contour of the structure (Kellog,
1929):

«P)———J 0~(Q)G (P,Q)dC ©)

where P(y, z) is the field point, Q(&, m) is the source
point, o-(0) is source density, C is the immersed
contour of the structure, and G(P, Q) is the Green
function.

The Green function corresponding to a source of unit

strength located below a free surface is given by
GP,Q)=In(p+G"(P.0) (10)
where Y=V —E2—(z - 0% and G'(P, Q) is a harmo-

nic function.
According to the radiation problem stated earlier, it
is required that G(P, Q) satisfy the boundary-value pro-

blem as follows:

Governing equation: g—cj + B_G =&P.0)
Free-surface condition: %Q —-kG =0

)z
Bottom condition: lim VG =0

20

%G + ikG)=0 (11

Sommerfeld condition: lim (
y —F

The Green function that satisfies the equations in (11)
has been solved to yield (Wehausen and Laitone, 1960;
Mei, 1989)

GP,0)=In() -~ In(y) +2P.V. [ exp(m(z +{)

cos(m (y —&)) dm —i exp
m-k

(k(z + ) cos(k(y — &) 12)

and P.V. denotes the principal value integral. A
detailed derivation of (12) is given, for example, by
Mei (1989). When the kinematic boundary condition
given by (4c) is imposed on (9), it follows that

op) _ 1 1 G (P,Q)
on _n3—2°(P)+2nJCG(Q) on dc

(13)

This equation is used to determine the source density
o(Q)-

It is assumed that the contour of the floating structure
C can be approximated by N straight-line segments, each
of which is denoted by C, j=1, 2...., N. Thus, (9) and (13)

can be written as

¢(P,,)~—ZI ;G (Px,Q;) dC (14)

;m
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ONPn) _ _1
=5, =nsPr) =5 G (Pn)

3G (P, Q;)
S dC (15)

1 N
+5p 2k 10
j#n

for n=1, 2,..., N. Clearly, the above equations will be
accurate as long as the segment size is small in com-
parison with the wavelength of the waves generated by
the motion of the body.

Once the solution to (15) for the source strength o;
has been obtained, the potential at any point on the
immersed contour C follows immediately. Hence, the
dynamic pressure on the immersed surface of the body
can be determined form of Euler's integral when the

motion is harmonic, that is, when

p=ipo¢ (16)

As a result, the expression for the hydrodynamic hea-

ving force on the structure is

F =exp(—iat)JC phe dc =exp (—iax)ipw_[c on,dC

= exp (~i )i poof, ¢%Zl dC a7

The hydrodynamic force can also be expressed as

ou
F=—m-uN 18
3" (18)
where u=1 - exp(-iot). Combining (17) and (18), we

have
3 .
ol ¢£d€ =m+LN (19)

which is consistent with (3) when ¢ is a complex
function. The complex form of ¢ is necessary in order
that the radiation condition be satisfied. The exciting
force is given by (1), that is, the Haskind-Hanaoka
relationship, written in terms of radiation, and Froude-
Krylov forces.

It should be noted that for some discrete ‘irregular
frequencies the Green function method fails to give a
solution. This occurs when the fluid field extends into

an interior region which is also bounded in part by a

free surface. John(1950) shows that an irregular-freque-
ncy phenomenon occurs when the adjacent interior
potential problem has a modal frequency which coin-
cides with the frequency of oscillation.

The results of the two cases for two pontoons and
two pontoons with columns are shown in Fig. 4. These
results are obtained by the BEM and the GFM. Fig. 4
shows plots of m =m(x)/(@V) and N =N(x)/(p¥Vg/L)
where p is the density of fluid, V is the volume of the
body immersed, g is the gravitational acceleration and L is
a scale length. The agreement between the BEM and
GFM results are, in general, satisfactory, aside from the
apparent lack of irregular frequencies in GFM predictions.

3. STRUCTURAL MODEL

The configuration of a single module of VLEFS is
shown in Fig. 5. Simplification reduces the system to be
analyzed from a sequence of modules to a connected
sequence of column-carrying pontoons, and the problem
of analysis becomes two-dimensional one. If only the
vertical motions and distortions are taken into account,
and the coordinate system shown in Fig. 6 is introduced,
the strutural dynamic equations of motion, according to

Timoshenko's beam theory, are

Far "o [KAG(“ n H Z,

20 o [0, o0 ) o)
MR E’[aﬂ”am:} KaG (““at]“’

(20)

where U, J, EI and KAG are, respectively, the mass per
unit length, the moment of inertia in pitch per unit
length, the flexural rigidity in vertical bending, and the
equivalent shearing rigidity of the beam, all being
functions of the x-coordinate, while o0 and B are, res-
pectively, the structural damping coefficients in shear
and bending. Z is the external time-varying vertical
force, ®, 8, and vy are the vertical deflection, the angle

of rotation of the cross section about the transverse axis
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Fig. 4. Hydrodynamic coefficients in heave direction.

due to bending, and the shear strain, respectively; they
are all functions of x and ¢ and satisfy the following

relationship (Timoshenko ef al., 1974).
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Fig. 5. Configuration of a single module.

When the boupdary conditions at the two free ends
are imposed, and ¢, B and Z are set equal to zero, the

solution of the equations yields the undamped natural

frequencies @, and the principal modes of free vibration

@h

(ofx), 8(x), ¥(x), J=2, 3,....). Here the first distortion
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Fig. 6. Coordinate system.

mode is denoted by j=2, for the reason that it has two
nodes. And, j=0 and 1 are used to denote the two
vertical rigid body modes, namely heave (j=0) and
pitch (j=1).

The forced response of a structure can be expressed

by modal superposition (Rayleigh, 1970) as
otx, t):jgm,(ij(t)
o, r)=§9,~(x)P,—(t) @)
xx,t>=§yj(x)1>,-(x>

where P()=0, 1, 2,..., n, are the principal coordinates.
The summation in the expressions can usually be res-
tricted to the lowest n principal modes (n=0, 1, 2, 3, 4, 5
are used in this study). The structural equations of
motion (20), can be converted to the following form to

be solved for the principal coordinates:

22| 0 2} el =) @)

where [a], [c] and [F] are the matrices of generalized
mass, stiffness and external force, respectively. The

elements of these matrices are
a; =Jf)(,ua),- ®; +J 6, 6;)dx

26, 90,
;=86 a)iza,-j=£[EI 3 —L +KAG Yy y; |dx

ox
F=[2,d @4

where i, j=0, 1,..., n. Here 3, is the Kronecker delta

function. All the fluid actions are now contained in the

external force term Z, and are, evidently, motion and
deflection dependent. The elements of the generalized

structural damping matrix are given by

96, 6,

> a |¥ 25)

b;; =Ji0 aKAG vy v, + BEI

Equation (23) is to be solved together with the
analysis of coupled hydrodynamic forces. Once the
principal coordinates are known, the calculation of
motions and distortions is a straightforward application
of (22). Furthermore, the bending moment M(x, f) and
the shear force V(x, )=KAGY(x, 1) at any cross section
of the structure can be obtained from the corresponding

principal modes M;(x) and V(x) as:

M@, 0= 3 M0, Vs, 0= SV, P, 0 (26)
j=2 j=2

4. ASSEMBLED GOVERNING EQUATIONS
OF MOTIONS

The equation (23) can be modified by including

fludic effect as

([a]+[A]>{%§—}+<[b]+[31){aa—f}

+([c]+[CD {p}={E )} @7

The matrices [A], [B] and [C] contain the generalized
hydrodynamic added-mass coefficients A; damping

coefficients B;, and hydrostatic restoring coefficients C;

if>

given by the following expressions:

Ay = Jom G, Gew, (0) d (28)
By = I N (eyw (o )w; ) dx 29
Cy =pg [ B(ew,()w; (x) dx (30)

The wave-excitation forces in regular waves, E;, are

now given by
E,(0)= [[ S (x) exp (=i (kx +00)) [~ Pm (x) —i N (¥)
+pgB (x)] w;(x)dx =E; exp (i ax) GD

The time harmonic response of the structure encoun-
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tering regular waves is such that

Pl=({lc]+[CT} -w*{la]+[A]} —iaf[b]+{BI)E}
(32)

5. PRACTICAL APPLICATION OF THE
HINGE CONNECTOR

In practical applications, a VLFS will most likely
consist of multiple modules linked with especially desi-
gned intermodule connectors. Because the connectors'
bending stiffness is likely to be much less than that of
the modules, the structure can be represented appro-
ximately by a series of rigid modules connected by
hinge connectors. In this case, since only vertical mo-
tions are considered, each module has only two degrees
of freedom, that is, heave and pitch. The equation of

motion for the structure is then

a2 i Bt sl =z o
where [a], [b], and [c] are the mass, structural damping,
and stiffness matrices of the dry structure, respectively;
{Y,} is the nodal displacement vector; and {Z;} is a
vector of all hydrodynamic forces, including diffraction
and radiation forces. A further simplification results if it
is assumed that there is no hydrodynamic interaction
between modules, in which case the hydrodynamic added
mass and damping of a single rigid module can be used
for each module of a VLFS. The hydrodynamic added-
mass matrix [A] and damping matrix [B] are assembled
in a straightforward manner and added to the structure
matrices. Similarly, the hydrostatic stiffness matrix {c] is
assembled. The equations of motion then can be writ-

ten as

e +a){ el o481 { G st iy - @

(34)

where [Z] is the exciting force.
It is assumed here that the connectors allow only
relative rotation between modules (that is, no relative

longitudinal or vertical displacement). Thus, there are

Wl wa
CcG 81

S W e B

Fig. 7. Rigid modules with flexible connectors (two-module
case).

only n+l independent displacements, where n is the
number of modules, as the displacements in {Y,} are

subject to the constraints

i i i

Wt Lo=w,- 26, (35)

[l

These constraints can be used to develop the equations of
motion from (34) as follows. If consideration is lim- ited
to the two-module VLFS shown in Fig. 7, the kine-
matically independent displacements are taken as [Y,]={6,,
wi, w,}'. From Eq. (35), one obtains {Y,}=[R]{Y,}, where

0 1 0
1 0 0

Rl=1g o 1 (36)
-1 =24 21

The equations of motion then become

[RY [a +A IR]{B;Z" } +RI[b +B IR]{ a;" }

+[RY [c +CIRI{U,} = [R {Z} (37

Equation (37) is valid for any number of modules so

long as the transformation matrix [R] is defined properly.

6. NUMERICAL APPLICATION AND
RESULTS

The structure to be analyzed here is a five-module
floating structure of which each module consists in a
deck 100 by 100 m shown in Figs. 1 and 5.

The stiffness of the modules is much greater> than
that of the connector. As mentioned before, two methods
are used to solve this problem. In the first, the structure

is treated as a slender continuous beam whose stiffness



282

between the modules is very much less than that along
the modules. The numerical results for the motion
response of such a structure in regular head seas of unit
amplitude are obtained based on the theory presented. In

the second method, the motion response of the rigid
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Fig. 8. Deflection, bending and shear modes of structure.
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modules, connected with hinges, is calculated. The results

obtained by these two methods are compared below.

6.1 The Flexible Rigid Connector Model

The modal shapes, Fig. 8, illustrate the characteristics
of such a structure consisting of almost rigid bodies
joined by very flexible connectors.

For the calculation of the hydrodynamic coefficients,
the BEM and the GFM give results in fair agreement
(see Fig. 4). The generalized wave force is then obta-
ined from (31). The generalized wave exciting force is
shown in Fig. 9.

Fig. 10 shows the variation of the dimensionless
amplitudes of the principal coordinates. The heave and
pitch motions dominate the response at the very large
wave periods. It should be noted that P,(pitch) and P,
(first elastic mode) attain their highest values close to
the wave period of 18 s, at which period P,(heave) is
zero. The response of the structure in head waves of 11
and 18 s periods is shown in Figs. 11(a) and 11(b),
respectively. The wave period of 18 s corresponds to a
wavelength of approximately 500 m, which is equal to

the total length of the structure made of five modules,
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Fig. 12. Hydrodynamic properties; (a) Added mass (in heave), (b) Added moment of inertia (in pitch), (c) Hydrodynamic
damping (in heave), (d) Hydrodynamic damping {in pitch), () Heave exciting force, (f) Pitch exciting moment.

while the wave period of 11 s corresponds to a wave-
length of 190 m, which is about 2.5 times shorter
than the length of the structure consisting of five
modules.

From these results it is seen that because of the
flexibility of the connectors, the first bending mode is
likely to occur even though the stiffness of the indivi-

dual modules is very high.

6.2 The Hinged Connector Model

The hydrodynamic coefficients and exciting forces
are calculated by a three-dimensional GFM for a single
module. In Figs. 12(a)~(e), the added-mass coefficie-
nts in heave and pitch are m, =m,ApV) and m p=m,
NpVL?), respectively; the damping coefficients in hea-
ve and pitch are N, =N ApVVgL ) and vasz/
(PVLWgA'), respectively; and the heave force and
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Fig. 13. Structural mode shape (wet).

pitch moment are Z w=Z/(pg V(H2YL) and Z p=Z,/
(pg VH/2), respectively. The calculated natural periods
and the mode shapes of the structure are shown in Fig.
13. In this figure T; refers to the natural period of each
mode. These results include the effect of added mass
for a wave period of 18 s. It is shown from Fig. 13
that the modal shape of the shortest natural period
corresponds to heave, and the modal shape of the
longest natural period corresponds to pitch. By adju-
sting the connector stiffness in heave or pitch or both,
the order of the modal shapes can be changed. It may
be desirable to give the modal shape corresponding to
heave the shortest natural period if the wave energy
is concentrated at small periods. Obviously, one nee-
ds to know the statistics of irregular waves in order
to make a judgment about the concentration of wave
energy.

The responses of the structure to head seas at wave
periods of 11 and 18 s, and of unit wave amplitude,
have been calculated at ¢=0, 7/4, T/2 and 37/4, where T
is, as usual, the wave period. These results are sho-
wn in Figs. 14(a) and 14(b).

A comparison of the results obtained in Sections 6.1
and 6.2 shows that, since the stiffness of connectors
is much smaller than that of each module, the
application of hinge connector may be more effective

and also give acceptable results. This is especially
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Fig. 14. Response of RMFC model; (a) wave length=189 m,

wave period=11s, (b) wave length=506 m, wave
period=18 s.

true if the response is high, as at 7=18 s. When the
response level is low, as at T=11 s, the deflection sha-
pes are not as close, but the amplitudes are in good
agreement. It is also shown, perhaps surprisingly, that
strip theory for the calculation of hydrodynamic coef-
ficients offers as good results as the three-dimensional
GFM.

7. CONCLUSIONS

Flexible body analysis has been given to a VLFS by
applying the hydroelasticity theory. The analysis provides
motions and section forces, which are useful for the
analysis and design of VLFS. The numerical results are
presented respectively for two types of module connector,
and shown that while the hinge connectors result in
greater motion, the rigid connectors increase substantially
the sectional moments. The hinged connector modules
also appears to be useful for the engineering design of a
VLEFS. Both the boundary-element method and Green
function method give numerical results which are in

reasonable mutual agreement.
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