Efficiency of CFT column plastic design approach for frame structures subjected to horizontal forces

  • SeongHun Kim (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hyo-Gyoung Kwak (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2023.05.24
  • Accepted : 2023.08.31
  • Published : 2023.11.25


This paper emphasizes the use of CFT columns in frame structures subjected to strong horizontal forces and shows that the efficiency of using CFT columns is increased when the plastic design approach is adopted. Because the plastic design approach is based on redistribution of the force of the internal member, a double node for the rotational degrees of freedom, where the adjacent two rotational degrees of freedom can be connected by a non-dimensional spring element, is designed and implemented into the formulation. In addition, an accompanying criterion is considered in order to make it possible to describe the continuous moment redistribution in members connected to a nodal point up to a complete plastic state. The efficiency of CFT columns is reviewed in comparison with RC columns in terms of the cost and the resistance capacity, as defined by a P-M interaction diagram. Three representative frame structures are considered and the obtained results show that the most efficient and economical design can be expected when the use of CFT columns is considered on the basis of the plastic design, especially when a frame structure is subjected to significant horizontal forces, as in a high-rise building.



This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land,Infrastructure and Transport (No.RS-2023-00246154).


  1. Aboutaha, R.S. and Machado, R. (1998), "Seismic resistance of steel confined reinforced concrete (SCRC) columns", Struct. Des. Tall Build., 7(3), 251-260.<251::aidtal112>,2-a.
  2. ACI Committee 318 (2014), ACI 318-14 Building Code Requirement for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  3. American Society of Civil Engineers (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  4. ANSI/AISC (2016), ANSI/AISC 360-16 Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  5. Applied Technology Council (2005), Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Federal Emergency Management Agency, Washington, D.C., USA.
  6. Arya, C. (2015), "Eurocode 2: Design of concrete structures", Design of Structural Elements, CRC Press, Boca Raton, FL, USA.
  7. Bae, S. and Bayrak, O. (2008), "Plastic hinge length of reinforced concrete columns", ACI Struct. J., 105(3), 290.
  8. Bai, Y., Ma, X., Wang, B., Cao, G. and Beer, M. (2020), "Cumulative component damages on collapse capacity of ductile steel and CFT moment resisting frames under overdesign ground motions", J. Earthq. Eng., 26(6), 3012-3033.
  9. British Standards Institution (1986), BS 8100 Lattice Towers and Masts, British Standards Institution, London, UK.
  10. Building Seismic Safety Council (US) (1988), NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings, Building Seismic Safety Council, Washington, D.C., USA.
  11. CEN (2005), EN 1998-3. Eurocode 8 - Design of Structures for Earthquake Resistance - Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardization, Brussels, Belgium.
  12. Chan, S.L. and Chui, P.P.T. (1997), "A generalized design-based elastoplastic analysis of steel frames by section assemblage concept", Eng. Struct., 19(8), 628-636.
  13. Chen, B., Lai, Z., Yan, Q., Varma, A.H. and Yu, X. (2017), "Experimental behavior and design of CFT-RC short columns subjected to concentric axial loading", J. Struct. Eng., 143(11), 04017148.
  14. Chung, J. and Matsui, C. (2005), "SRC standards in Japan and comparison of various standards for CFT columns", Steel Struct., 5, 315-323.
  15. Braga, F., Gigliotti, R., Laterza, M., D'Amato, M. and Kunnath, S. (2012), "Validation of a modified steel bar model incorporating bond-slip for seismic assessment of concrete structures", J. Struct. Eng., 138(11), 1342-1350.
  16. Dell'Aglio, G., Montuori, R., Nastri, E. and Piluso, V. (2019), "Consideration of second-order effects on plastic design of steel moment resisting frames", Bull. Earthq. Eng., 17, 3041-3070.
  17. Eslami, A. and Ronagh, H.R. (2014), "Effect of elaborate plastic hinge definition on the pushover analysis of reinforced concrete buildings", Struct. Des. Tall Spec. Build., 23(4), 254-271.
  18. Hajjar, J.F. (2000), "Concrete-filled steel tube columns under earthquake loads", Prog. Struct. Eng. Mater., 2(1), 72-81.<72::aidpse9>,2-e.
  19. Hatzigeorgiou, G.D. (2008), "Numerical model for the behavior and capacity of circular CFT columns, Part I: Theory", Eng. Struct., 30(6), 1573-1578.
  20. Hoang, V.L., Nguyen Dang, H., Jaspart, J.P. and Demonceau, J.F. (2015), "An overview of the plastic-hinge analysis of 3D steel frames", Asia Pacific J. Comput. Eng., 2(1), 1-34.
  21. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329.
  22. Inel, M. and Ozmen, H.B. (2006), "Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings", Eng. Struct., 28(11), 1494-1502.
  23. Ju, S. and Kwak, H.G. (2021), "Moment-curvature approach for blast analysis of RC frames with multitudinous members", J. Build. Eng., 42, 102463.
  24. Kannas, H. and Wafi, A.M. (2020), "Study of the plastic-hinge analysis of 3D steel frames applying nonlinear static analysis", Int. J. Adv. Eng. Sci. Appl., 1(3), 24-29.
  25. Kim, D.K. (2005), "A database for composite columns", No. August: 282, Georgia Institute of Technology, Atlanta, GA, USA.
  26. Kim, S.H. and Kwak, H.G. (2021), "FE analysis of ultimate strength of circular CFT columns considering creep effect", Comput. Concrete, 28(3), 333-345.
  27. Kim, S.H. and Kwak, H.G. (2022), "Optimization of an RC frame structure based on a plastic analysis and direct search of a section database", J. Build. Eng., 48, 103959.
  28. Korea Price Information (n.d.),
  29. Kwak, H.G. and Kim, J. (2008), "Optimum design of reinforced concrete plane frames based on predetermined section database", CAD Comput. Aid. Des., 40(3), 396-408.
  30. Kwak, H.G. and Kim, S.P. (2002), "Nonlinear analysis of RC beams based on moment-curvature relation", Comput. Struct., 80(7-8), 615-628.
  31. Kwon, S.H., Kim, Y.Y. and Kim, J.K. (2005), "Long-term behaviour under axial service loads of circular columns made from concrete filled steel tubes", Mag. Concrete Res., 57(2), 87-99.
  32. Lai, Z., Varma, A.H. and Griffis, L.G. (2016), "Analysis and design of noncompact and slender CFT beam-columns", J. Struct. Eng., 142(1), 04015097.
  33. Lee, C. and Ahn, J. (2003), "Flexural design of reinforced concrete frames by genetic algorithm", J. Struct. Eng., 129(6), 762-774.
  34. Liu, S.W., Liu, Y.P. and Chan, S.L. (2012), "Advanced analysis of hybrid steel and concrete frames: Part 2: Refined plastic hinge and advanced analysis", J. Constr. Steel Res., 70, 337-349.
  35. Lopez-Lopez, A., Tomas, A. and Sanchez-Olivares, G. (2016), "Influence of adjusted models of plastic hinges in nonlinear behaviour of reinforced concrete buildings", Eng. Struct., 124, 245-257.
  36. Lu, X., Lu, X., Guan, H., Zhang, W. and Ye, L. (2013), "Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building", J. Constr. Steel Res., 82, 59-71.
  37. Luo, L., Ding, F.X., Wang, L. and Liu, X.M. (2021), "Plastic hinge and seismic structural measures of terminal stirrup-confined rectangular CFT columns under low-cyclic load", J. Build. Eng., 34, 101908.
  38. Monti, G. and Petrone, F. (2015), "Yield and ultimate moment and curvature closed-form equations for reinforced concrete sections", ACI Struct. J., 112(4), 463-474.
  39. Montuori, R., Nastri, E. and Piluso, V. (2015), "Advances in theory of plastic mechanism control: Closed form solution for MR-frames", Earthq. Eng. Struct. Dyn., 44(7), 1035-1054.
  40. Moon, J., Lehman, D.E., Roeder, C.W. and Lee, H.E. (2013), "Strength of circular concrete-filled tubes with and without internal reinforcement under combined loading", J. Struct. Eng., 139(12), 04013012.
  41. Morino, S., Uchikoshi, M. and Yamaguchi, I. (2001), "Concrete-filled steel tube column system-its advantages", Int. J. Steel Struct., 1(1), 33-44.
  42. Mostoufinezhad, D. and Farahbod, F. (2007), "Parametric study on moment redistribution in continuous RC beams using ductility demand and ductility capacity concept", Iran. J. Sci. Technol. Trans. B: Eng., 31(B5), 459-471.
  43. Newmark, N.M. and Hall, W.J. (1982), Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, CA, USA.
  44. Park, R. and Paulay, T. (1991), Reinforced Concrete Structures, John Wiley & Sons, Hoboken, NJ, USA.
  45. Ravikumara, H.S., Kulkarni, S.R. and Narayan, K.B. (2015), "A study on plastic hinge formation in RC frame by nonlinear static analysis", Int. J. Res. Eng. Technol., 4(9), 179-182.
  46. Reza Banihashemi, M., Mirzagoltabar, A.R. and Tavakoli, H.R. (2015), "Development of the performance based plastic design for steel moment resistant frame", Int. J. Steel Struct., 15, 51-62.
  47. Sepahvand, M.F., Akbari, J. and Kusunoki, K. (2019), "Plastic design of moment resisting frames using mechanism control", J. Constr. Steel Res., 153, 275-285.
  48. Shakir, A. and Rogowsky, D.M. (2000), "Evaluation of ductility and allowable moment redistribution in reinforced concrete structures", Can. J. Civil Eng., 27(6), 1286-1299.
  49. Kevadkar, M.D. and Kodag, P.B. (2013), "Lateral load analysis of R.C.C. building", Int. J. Modern Eng. Res., 3(3), 1428-1434.
  50. Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 1-13.
  51. Stark, J.W. (2000), "European standards for composite construction", Proceedings of the Conference: Composite Construction in Steel and Concrete IV, Banff, Alberta, Canada, May-June.
  52. Tazarv, M. and Saiidi, M.S. (2016), "Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions", Eng. Struct., 124, 507-520.
  53. Truong, G.T., Kim, J.C. and Choi, K.K. (2017), "Seismic performance of reinforced concrete columns retrofitted by various methods", Eng. Struct., 134, 217-235.
  54. Zhang, D.J., Ma, Y.S. and Wang, Y. (2015), "Compressive behavior of concrete filled steel tubular columns subjected to long-term loading", Thin Wall. Struct., 89, 205-211.
  55. Zhao, X., Wu, Y.F., Leung, A.Y. and Lam, H.F. (2011), "Plastic hinge length in reinforced concrete flexural members", Procedia Eng., 14, 1266-1274.
  56. Zhou, T., Chen, Z. and Liu, H. (2012), "Seismic behavior of special shaped column composed of concrete filled steel tubes", J. Constr. Steel Res., 75, 131-141.